1 Transforms

Fourier Transform

$$x_a(j\Omega) = \int_{-\infty}^{\infty} x_a(t) e^{-j\Omega t} dt$$

Inverse Fourier Transform

$$x_a(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X_a(j\Omega) e^{j\Omega t} d\Omega$$

Fourier Transform of Sampled Signal

$$X_p(j\Omega) = \frac{\Omega_T}{2\pi} \sum_{k=-\infty}^{\infty} x_a(j(\Omega + k\Omega_T))$$
$$\Omega_T = \frac{2\pi}{T}$$

Interpolation

$$x_a(t) = \sum_{n=-\infty}^{\infty} x_a(nT)\operatorname{sinc}(\frac{t}{T} - n)$$

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$
$$\sum_{n=-\infty}^{\infty} |x[n]| < \infty$$

Inverse DTFT

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$
$$\mathbf{DTFT} \leftrightarrow \mathbf{FT}$$

$$X(e^{j\omega}) = X_p(j\omega/T) = \frac{1}{T} \sum_{k=-\infty}^{\infty} x_a(j(\omega + 2\pi k)\frac{1}{T}))$$

Z-Transform

The DTFT is the ZT on the unit circle if $z = re^{j\omega}$ converges

$$G(z) = \sum_{n = -\infty}^{\infty} g[n] z^{-n}$$
$$z \in C$$

Inverse Z-Transform

$$g[n] = \frac{1}{2\pi j} \oint_C G(z) z^{n-1} dz$$

Residue

$$\lim_{z \to \lambda_0} (z - \lambda_0) G(z) z^{n-1}$$

$$\frac{1}{m-1}! \lim_{z \to \lambda_0} \left\{ \frac{d^{m-1}}{d_z^{m-1}} (z - \lambda 0^m G(z) z^{n-1} \right\}$$
ROC

$$\sum_{k=1}^{\infty} |g[n]| r^{-n} < \infty$$

 $n = -\infty$

2 Trigonometry

$$\sin(x) = \frac{e^{jx} - e^{-jx}}{2j}$$
$$\cos(x) = \frac{e^{jx} + e^{-jx}}{2}$$
$$\sin(\alpha)\cos(\beta) = \frac{\sin(\alpha + \beta) + \sin(\alpha - \beta)}{2}$$
$$\cos(\alpha)\cos(\beta) = \frac{\cos(\alpha + \beta) + \cos(\alpha - \beta)}{2}$$
$$\sin(\alpha)\sin(\beta) = \frac{\cos(\alpha - \beta) - \cos(\alpha + \beta)}{2}$$

3 Analog Filters

	Equiripple	Monotonic
Chebyshev Type I	PB	SB
Chebyshev Type II	SB	PB
Elliptic	PB, SB	

Ideal LPF

$$H(s) = \frac{\Omega_1}{s + \Omega_1}$$
$$H(j\Omega) = \frac{\Omega_1}{j\Omega + \Omega_1}$$

3.1 Spectral Transforms

$$\Omega_0 = \hat{\Omega}_0^2 = \hat{\Omega}_{p1}\hat{\Omega}_{p2}$$
$$BW = \hat{\Omega}_{p2} - \hat{\Omega}_{p1}$$

Analog Highpass

$$s = \frac{\Omega_p \hat{\Omega}_p}{\hat{s}}$$

$$\Omega = \frac{\Omega_p \hat{\Omega}_p}{\hat{\Omega}}$$

Analog Bandpass

$$s = \Omega_p \frac{\hat{s}^2 + \hat{\Omega}_{p1} \hat{\Omega}_{p2}}{\hat{s} (\hat{\Omega}_{p2} - \hat{\Omega}_{p1})}$$

$$\Omega = -\Omega_p \frac{\hat{\Omega}_{p1} \hat{\Omega}_{p2} - \hat{\Omega}^2}{\hat{\Omega} (\hat{\Omega}_{p2} - \hat{\Omega}_{p1})}$$

Analog Bandstop

$$s = \frac{\Omega_s \hat{s}(\hat{\Omega}_{s2} - \hat{\Omega}_{s1})}{\hat{s}^2 + \hat{\Omega}_{s1}\hat{\Omega}_{s2}}$$

$$\Omega = \frac{\Omega_s \hat{\Omega} (\hat{\Omega}_{s2} - \hat{\Omega}_{s1})}{\hat{\Omega}_{s1} \hat{\Omega}_{s2} - \hat{\Omega}^2}$$

Ripple Specifications

$$1 - \delta_p \le |H_a(j\omega)| \le 1 + \delta_p$$

$$\alpha_p = -20 \log_{10}(1 - \delta_p)$$

$$|H_a(j\Omega)| < \delta_s$$

$$\alpha_s = -20 \log_{10}(\delta_s)$$

For no anti-aliasing in the interesting band

$$\Omega_s < \Omega_T - \Omega_p$$

Bilinear Transform

LHP maps to inside of UC Im axis maps to the UC

$$s = \frac{2}{T} \frac{1 - z^{-1}}{1 + z^{-1}}$$
$$z = \frac{1 + (T/2)s}{1 - (T/2)s}$$
$$\Omega = \frac{2}{T} \tan(\omega/2)$$
$$\omega = 2 \arctan(\Omega T/2)$$

3.2 Butterworth LPF

Poles of H(s)H(-s) are equally spaced on $r = \Omega_c$

$$H(s)H(-s) = \frac{1}{1 + (-s^2/\Omega_c^2)^N}$$
$$|H(j\Omega)|^2 = \frac{1}{1 + (\Omega/\Omega_c)^{2N}}$$

Minimum passband gain

$$1 - \delta_p = \frac{1}{\sqrt{1 + \epsilon^2}}$$

$$\epsilon^2 = \frac{1}{(1 - \delta_p)^2} - 1$$
Order
$$A = \frac{1}{\delta_s}$$

$$k = \frac{\Omega_p}{\Omega_s}$$

$$k_1 = \epsilon / \sqrt{A^2 - 1}$$

$$N = \frac{\log((1 - \delta_s^2) / (\delta_s^2 \epsilon^2))}{2 \log(\Omega_s / \Omega_p)}$$

$$= \frac{\log(1/k_1)}{\log(1/k)}$$

$$= \frac{\log(\sqrt{A^2 - 1}/\epsilon)}{\log(\Omega_s / \Omega_p)}$$

Determine Ω_c : Exceed specification in stopband

$$\frac{1}{1 + (\Omega_p / \Omega_c)^{2N}} = \frac{1}{1 + \epsilon^2} = (1 - \delta_p)^2$$

Exceed specification in passband

$$\frac{1}{1+(\Omega_s/\Omega_c)^{2N}} = \delta_s^2 = \frac{1}{A^2}$$

LHP Poles:

$$(-s^2/\Omega_c^2)^N = -1$$

$$s = \Omega_c e^{j\frac{\pi}{2}} e^{j(1+2k)\pi/(2N)} \text{VERIFY}$$

Type 1

$$|H_a(j\Omega)|^2 = \frac{1}{1 + \epsilon^2 T_N(\Omega/\Omega_p)}$$

Type 2

$$|H_a(j\Omega)|^2 = \frac{1}{1 + \epsilon^2 \left(\frac{T_N(\Omega_s/\Omega_p)}{T_N(\Omega_s/\Omega)}\right)}$$

$$T_N = \begin{cases} \cos(N \arccos(\Omega)) & |\Omega| \le 1\\ \cosh(N \operatorname{arccosh}(\Omega)) & |\Omega| > 1 \end{cases}$$

3.4 Elliptic

Faster transition band, equiripple everywhere

4 Phase and Delay

Phase Delay (Carrier)

$$\tau_p(\omega_0) = -\frac{\theta(\omega_0)}{\omega_0}$$

Group Delay (Envelope)

If group delay is constant, there is linear phase

$$\tau_g(\omega_0) = -\frac{d\theta(\omega)}{d\omega}|_{\omega=\omega_0}$$

Linear Phase Filter

$$H(e^{j\omega}) = e^{-j\omega D} e^{j\beta} \hat{H}(w)$$
$$\hat{H}(w) \text{ is real}$$
$$\tau_q(\omega) = D$$

4.1 Minimum Phase Transfer Function

Minimum	Zeros all in UC
Non-Minimum	Zeros outside UC
Mixed	Zeros inside/outside UC
Maximum	All zeros outside UC

Can represent any transfer function as

$$H(z) = H_{min}(z)A(z)$$

Where $H_{min}(z)$ is a minimum phase transfer function A(z) is an all pass filter

$$H_{min}(z) = H(z) \underbrace{\frac{z^{-1} - c_1^*}{1 - c_1 z^{-1}} \dots \frac{z^{-1} - c_M^*}{1 - c_M z^{-1}}}_{\text{unit magnitude all-bass filter}}$$

4.2 All Pass Filter

 $|A(e^{j\omega})| = 1 \text{ for all } \omega$ $A_M(z) = \pm \frac{d_M + d_{M-1}z^{-1} + \dots + d_1z^{-M+1} + z^{-M}}{1 + d_1z^{-1} + \dots + d_{M-1}z^{-M+1} + d_Mz^{-M}}$

- Poles/Zeros are mirrored
- Unwrapped phase is a decreasing function of frequency
- Group delay is positive for all ω
- Phase change from $\omega = 0 \rightarrow \omega = \pi$ is $\int_0^{\pi} \tau_g(\omega) d\omega = M\pi$

4.3 Zero Phase Transfer Function

Given a filter H(z)

$$F(z) = H(z)H(z^{-1})$$

z = v is a pole of F(z) and $z = \frac{1}{v}$ is also a pole

5 FIR Filters

- Stable
- Easy to implement
- Linear phase can be guaranteed

$$y[n] = b_0 x[n] + b_1 x[n-1] + \dots + b_M x[n-M]$$
$$H(e^{j\omega}) = b_0 + b_1 e^{-j\omega} + \dots + b_M e^{-j\omega M}$$

Low Pass

$$H(z) = \frac{z+1}{2z}$$
$$y[n] = \frac{1}{2}x[n] + \frac{1}{2}x[n-1]$$
$$H(e^{j\omega}) = e^{-j\omega/2}\cos(\omega/2)$$

High Pass

$$H(z) = \frac{z-1}{2z}$$
$$y[n] = \frac{1}{2}x[n] - \frac{1}{2}x[n-1]$$
$$H(e^{j\omega}) = e^{-j(\omega/2 - \pi/2)}\sin(\omega/2)$$

5.1Classification

Symmetric

$$H(z) = z^{-N}H(z^{-1})$$

$$h[n] = h[N - n]$$

Antisymmetric

$$H(z) = -z^{-N}H(z^{-1})$$

$$h[n] = -h[N - n]$$

Type I N - even

$$h[n] = h[N - n]$$

$$\breve{H}(\omega) = h[\frac{N}{2}] + 2\sum_{n=1}^{N/2} h[\frac{N}{2} - n]\cos(\omega n)$$

Type II

Must have a zero at z = -1, not suitable for HPF N - odd

$$h[n] = h[N - n]$$

$$\breve{H}(\omega) = 2\sum_{n=1}^{(N+1)/2} h[\frac{N+1}{2} - n]\cos(\omega(n - \frac{1}{2}))$$

Type III Must have a zero at z = -1 and z = 1, not suitable for LPF, HPF N - even

$$h[n] = -h[N - n]$$

$$\breve{H}(\omega) = 2\sum_{n=1}^{N/2} h[\frac{N}{2} - n]\sin(\omega n)$$

Type IV

Must have a zero at z = 1, not suitable for LPF N - odd

$$h[n] = -h[N-n]$$

$$\breve{H}(\omega) = 2\sum_{n=1}^{(N+1)/2} h[\frac{N+1}{2} - n]\sin(\omega(n - \frac{1}{2}))$$

Linear Phase

For linear phase causal FIR, must contain term $e^{-j\frac{N}{2}\omega}$ Symmetric and Antisymmetric filters are always linear

5.2Ideal FIR impulse response

.

$$\begin{split} H_e^{j\omega} &= 1 \text{ in passband} \\ \textbf{Low Pass} \\ h_{LP}[n] &= \begin{cases} \frac{\omega_c}{\pi} & n = 0 \\ \frac{\sin w_c n}{\pi n} & n \neq 0 \end{cases} \\ \textbf{High Pass} \end{split}$$

$$h_{HP}[n] = \begin{cases} 1 - \frac{\omega_c}{\pi} & n = 0\\ -\frac{\sin \omega_c n}{\pi n} & n \neq 0 \end{cases}$$

Band Pass

$$h_{BP}[n] = \begin{cases} \frac{\omega_{c2} - \omega_{c1}}{\pi} & n = 0\\ \frac{\sin \omega_{c2} n}{\pi n} - \frac{\sin \omega_{c1} n}{\pi n} & n \neq 0 \end{cases}$$

Band Stop

$$h_{BS}[n] = \begin{cases} 1 - \frac{\omega_{c2} - \omega_{c1}}{\pi} & n = 0\\ \frac{\sin \omega_{c1}n}{\pi n} - \frac{\sin \omega_{c2}n}{\pi n} & n \neq 0 \end{cases}$$

5.3Windowing

- No precise edge frequency control
- Width of the transistion region between passband and stopband in $H(e^{j\omega})$ increases with width of main lobe of $W(e^{j\omega})$
- Ripple in PB/SB is dependent on area under sidelobes
- If N increases the width of the main lobe decreases but area under sidelobes remain constant. This means transistion region smaller but ripple remains.
- Ripple caused by rectangular window is usually not acceptable, and instead a window which tapers smoothly to zero at each end is used.
- Reduced ripple has tradeoff with wider transition region. Can compensate by increasing N.

Properties

All symmetric, so ripple in PB and SB are equal

Window	Width mainlobe	Peak sidelobe	$20 \log_{10}\delta$
Rectangular	$4\pi/N$	-13dB	-21 dB
Hanning	$8\pi/N$	-32 dB	-44dB
Hamming	$8\pi/N$	-43dB	-54dB
Blackman	$12\pi/N$	-58 dB	-75 dB

Hanning

$$w[n] = 0.5 - 0.5 \cos(\frac{2\pi n}{N})$$

Hamming

$$w[n] = 0.54 - 0.46\cos(\frac{2\pi n}{N})$$

Blackman

$$w[n] = 0.42 - 0.5\cos(\frac{2\pi n}{N} + 0.08\cos(\frac{4\pi n}{N}))$$

5.4 Parks McClellan Method

Minimises weighted peak error in passbands and stopbands (equiripple in both)

$$\epsilon(\omega) = W(e^{j\omega})[H(e^{j\omega}) - D(e^{j\omega})]$$

Least squares criterion

$$\min_{H(e^{j\omega})} \int_{-\pi}^{\pi} |W(e^{j\omega})| [H(e^{j\omega}) - D(e^{j\omega})]|^2 d\omega$$

Minimax / Chebyshev criterion

Where R is a set of disjoint frequency bands comprising the passbands and the stopbands. Used by the Parks-McClelland method

$$\min_{H(e^{j\omega})} \max_{\omega \in R} |W(e^{j\omega})| [H(e^{j\omega}) - D(e^{j\omega})]$$

Error function for linear phase filters

Where
$$\check{H}(\omega)$$
 is real

$$H(e^{j\omega}) = e^{-jN\omega/2} e^{j\beta} \breve{H}(\omega)$$

6 IIR Filters (causal)

- Smaller ripples
- Fewer parameters
- Lower computational complexity and memory

$$y[n] + \alpha_1 y[n-1] + \dots + \alpha_N y[n-N] = b_0 + b_1 e^{-j\omega} + \dots + b_M e^{-j\omega M}$$

$$H(e^{j\omega}) = \frac{b_0 + b_1 e^{-j\omega} + \dots + b_M e^{-j\omega M}}{\alpha_1 y[n-1] + \dots + \alpha_N y[n-N]}$$

Low Pass

$$H_{LP}(z) = \frac{1 - \alpha}{z} \frac{1 + z^{-1}}{1 - \alpha z^{-1}}$$

$$|H_{LP}(e^{j\omega})|^{2} = \frac{(1-\alpha)^{2}(1+\cos(\omega))}{2(1+\alpha^{2}-2\alpha\cos(\omega))}$$

High Pass

$$H_{HP}(z) = \frac{1+\alpha}{2} \frac{1-z^{-1}}{1-\alpha z^{-1}}$$

Band Pass

$$H_{BP}(z) = \frac{1-\alpha}{2} \frac{1-z^{-2}}{2-\beta(1+\alpha)z^{-1}+\alpha z^{-2}}$$
$$r = \sqrt{\alpha}$$
$$\phi = \arccos(\beta(1+\alpha)/(2\sqrt{\alpha}))$$
$$e^{j\omega}|^{2} = \frac{(1-\alpha)^{2}\sin^{2}(\omega)}{(1+\alpha)^{2}(3-\cos(\omega))^{2}+(1-\alpha)^{2}\sin^{2}(w)}$$

$$\omega_0 = \arccos(\beta)$$

$$BW = \omega_{c2} - \omega_{c1} = \arccos(\frac{2\alpha}{1 + \alpha^2})$$

 $|H_{BP}|$

Band Stop Magnitude is 0 at ω_0 and 1 at $0,\pi$

 $H_{BS}(z) = \frac{1+\alpha}{2} \frac{1-2\beta z^{-1}+z^{-2}}{1+\beta(1+\alpha)z^{-1}+\alpha z^{-2}}$

$$BW = \arccos(\frac{2\alpha}{1+\alpha^2})$$

7 Causality and Stability

Causality

- $H(e^{j\omega})$ cannot be 0 except at a finite number of ω
- $|H(e^{j\omega}|$ cannot be constant in the frequency band
- $|H(e^{j\omega})|$ and phase $\angle H(e^{j\omega})$ are dependent on each other

Stability

• BIBO stability is defined as (for continuous and discrete time respectively)

$$\int_{-\infty}^{\infty} |h(t)| dt < \infty$$
$$\sum_{n=-\infty}^{\infty} |h[n]| < \infty$$

• A transfer function is stable if all the poles are in the unit circle

8 Discrete Fourier Transform

L = Length of data sequence

M = FIR Filter Length

N = Number of frequencies the DFT is sampled at

N-point DFT

$$X[k] = X\left(e^{j\frac{2\pi k}{N}}\right) = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi kn}{N}}$$
$$k = 0, 1, 2, \dots, N-1$$

Inverse DFT

$$\tilde{x}[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j\frac{2\pi kn}{N}} = x[n]$$

$$n = 0, 1, \dots, \dots, N-1$$

Condition for recovery x[n] is time limited to less than N

$$x[n] = \begin{cases} x_p[n] & 0 \le n \le N-1\\ 0 & \text{otherwise} \end{cases}$$

8.1 DFT as a linear transformation

$$W_{N} = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & W_{N} & W_{N}^{2} & \dots & W_{N}^{N-1} \\ 1 & W_{N}^{2} & W_{N}^{4} & \dots & W_{N}^{2(N-1)} \\ 1 & W_{N}^{2} & W_{N}^{4} & \dots & W_{N}^{2(N-1)} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & W_{N}^{N-1} & W_{N}^{2(N-1)} & \dots & W_{N}^{(N-1)(N-1)} \end{bmatrix}$$
$$\mathbf{DFT}$$
$$X_{N} = \mathbf{W}_{N} x_{N}$$

$$\mathbf{IDFT}$$

$$x_N = \boldsymbol{W}_N^{-1} X_N = \frac{1}{N} \boldsymbol{W}_N^* X_N$$

8.2 Properties

Periodicity X[k] and x[n] are periodic with period N

Linearity

$$x[n] = a_1 x_1[n] + a_2 x_2[n]$$

$$X[k] = a_1 X_1[k] + a_2 X_2[k]$$
Conjugate
$$X^*[k] \leftrightarrow x^*[\langle -k \rangle_N]$$
Time Shift
$$e^{\frac{-j2\pi ka}{N}} X[k] \leftrightarrow x[\langle n-a \rangle_N]$$
Even/Odd

$$\begin{aligned} x_{even}[n] &= \frac{1}{2} (x[n] + x^* [\langle -n \rangle_N]) \leftrightarrow \Re\{X[k]\} \\ x_{odd}[n] &= \frac{1}{2} (x[n] - x^* [\langle -n \rangle_N]) \leftrightarrow j \Im\{X[k]\} \\ \mathbf{Symmetry} \end{aligned}$$

For a real sequence $x[n] = x^*[n]$

$$X[N-k] = X^*[k] = X[\langle -k \rangle_N]$$

For x[n] real and even, X[k] real and even For x[n] real and odd, X[k] imaginary and odd

Parseval's relation

$$\sum_{n=0}^{N-1} |x[n]|^2 = \frac{1}{N} \sum_{k=0}^{N-1} |X[k]|^2$$

8.3 Circular Convolution

Can be turned into a linear convolution by padding $x_1[n]$ and $x_2[n]$ with zeros so they have length at least L + M - 1

$$x_1[n] \circledast x_2[n] \equiv \sum_{k=0}^{N-1} x_1[k] x_2[\langle n-k \rangle_N]$$

Example

$$x_1 = \{1, 2, 0\}, \quad x_2 = \{3, 5, 4\}$$

k	-2	-1	0	1	2	3	
$x_1[k]$			1	2	0		
$x_2[\langle -k \rangle_3]$	4	5	3	4	5	3	11 = y[0]
$x_2[1\langle -k\rangle_3]$	3	4	5	3	4	5	11 = y[1]
$x_2[2\langle -k\rangle_3]$	5	3	4	5	3	4	14 = y[2]
$x_2[3\langle -k\rangle_3]$	4	5	3	4	5	3	11 = y[3]
$(=x_2[\langle -k\rangle_3]$							

Circular shift

$$\langle m \rangle_N = \begin{cases} \operatorname{rem}(m, N) & m \ge 0\\ \operatorname{rem}(m, N) + N & m < 0, \operatorname{rem}(m, N) \neq 0\\ 0 & m < 0, \operatorname{rem}(m, N) = 0 \end{cases}$$

Circular time shift

$$x_1[n] = x[\langle n - l \rangle_N]$$
$$X_1[k] = X[k]e^{-j\frac{2\pi k l}{N}}$$

Circular frequency shift

$$x_1[n] = x[n]e^{j\frac{2\pi ln}{N}}$$
$$X_1[k] = X[\langle k - l \rangle_N]$$

8.4 Fast Fourier Transform

- Direct computation of DFT is $O(N^2)$
- FFT algorithm is $O(N \log N)$
- FFT exploits periodicity and symmetry
- Need to zero pad for length $N=2^{\nu}$
- $\log_2(N)$ stages, with N/2 multiplications at each

Computations per output data point

$$\frac{N\log_2(2N)}{L} = \frac{N\log_2(2N)}{N-M+1}$$
$$c(\nu) \approx \frac{2^{\nu}(\nu+1)}{2^{\nu}-M}$$

9 Multi Rate Signal Processing

9.1 Up Sampler

$$x_u[n] = \begin{cases} x[n/L] & n = 0, \pm L, \pm 2L, \dots \\ 0 & \text{otherwise} \end{cases}$$
$$X_u(e^{j\omega}) = X(e^{j\omega L})$$

Interpolator

Low pass filter to remove frequency domain images Gain of LPF should compensate for insertion of zeros, and hence should be L.

$$X_u(e^{j\omega}) = \frac{1}{L}X_1(e^{j\omega})$$

- In the frequency domain the spectrum is compressed with factor L and we get L-1 additional images of the spectrum.
- Sampling at $F_s = 1/T$, highest frequency component of x[n] is 1/2T Hz corresponding to π radians/sample.
- Highest frequency after upsampling of x_u is π radians/sample corresponding to L/2T Hz.

9.2 Down Sampler

$$y[n] = x[nM]$$
$$Y(e^{j\omega}) = \frac{1}{M} \sum_{k=0}^{M-1} X(e^{j(\omega+2\pi k)/M})$$

Single Stage Decimator

Frequencies above π/M are aliased and should be removed (decimated) prior to down-sampling

$$\begin{array}{ll} \mbox{Passband} & 0 \leq F \leq F_p \\ \mbox{Transition region} & F_p \leq F \leq F_s (\leq F_0/2M) \\ \mbox{Stopband} & F_s \leq F \leq F_0/2 \end{array}$$

Multi stage decimator

A factor M decimator can be implemented in K stages with the advantage of relaxed filter specifications

$$M = \prod_{i=1}^{K} M_i$$

 F_0 : sampling frequency at input of decimator F_i : sampling frequency at output of *i*th stage $F_i = \frac{F_{i-1}}{M_i}$

ith stage:

 $\begin{array}{ll} \mbox{Passband} & 0 \leq F \leq F_p \\ \mbox{Transition region} & F_p \leq F \leq F_i - F_s \\ \mbox{Stopband} & F_i - F_s \leq F \leq F_{i-1}/2 \end{array}$

Last stage:

Passband
$$0 \le F \le F_p$$

Transition region $F_p \le F \le F_s$
Stopband $F_s \le F \le F_{K-1}/2$

Ripple Specification (Two stage example)

Passband
$$\delta'_{p} = \sqrt{1 + \delta_{p}} - 1$$

Stopband $\delta'_{s} = \delta_{s}$

Decimation filter computational saving

$$\frac{(2K+1)M}{KM+K+1}$$

10 Energy Spectrum

Energy over interval N

$$E_N = \sum_{n=-N}^{N} |x[n]|^2$$

Energy Signals

$$E = \lim_{N \to \infty} E_N$$
$$= \sum_{n = -\infty}^{\infty} |x[n]|^2 < \infty$$

Power Signals

$$P = \lim_{N \to \infty} \frac{1}{2N+1} E_N$$
$$= \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^N |x[n]|^2 < \infty$$

Crosscorrelation

Measure of the degree to which two signals resemble each other

$$\begin{aligned} r_{xy}[l] &= \sum_{n=-\infty}^{\infty} x[n]y[n-l], \quad l=0,\pm 1,\pm 2,\dots \\ r_{xy}[l] &= r_{yx}[-l] \\ |r_{xy}[l]| &\leq \sqrt{r_{xx}[0]r_{yy}[0]} \\ \mathbf{Autocorrelation} \end{aligned}$$

$$r_{xx}[l] = \sum_{n=-\infty}^{\infty} x[n]x[n-l], \quad l = 0, \pm 1, \pm 2, \dots$$
$$r_{xx}[l] = r_{xx}[-l]$$
$$|r_{xx}[l]| \le r_{xx}[0]$$

Wiener-Khintchine theorem:

 $S_{xx}(e^{j\omega})$ is the DTFT of $r_{xx}[n]$ Implies two ways of computing energy spectrum

- 1. Compute the DTFT $X(e^{j\omega})$ and $S_{xx}(e^{j\omega}) = |X(e^{j\omega})|^2$
- 2. Compute the autocorrelation $r_{xx}[l]$ and $S_{xx}(e^{j\omega}) = \text{DTFT}\{r_{xx}[l]\}$

10.1 Estimation of energy spectrum

Direct method

$$S_{xx}(e^{j\omega}) = |X(e^{j\omega})|^2 = |\sum_{n=-\infty}^{\infty} x[n]e^{j\omega n}|^2$$

Estimate of energy spectrum

$$S_{\tilde{x}\tilde{x}}(e^{j\omega}) = |\sum_{n=0}^{N-1} x[n]e^{j\omega n}|^2$$

Windowing

$\tilde{x}[n] = w[n]x[n]$

- Convolution with mainlobe smooths the estimate over nearby frequencies
- The frequency resolution is determined by the width of the mainlobe
- The sidelobes cause sidelobe energy to appear in the spectrum. This is called spectral leakage
- Smoothing caused by window can be a problem when we need to resolve signals with closely spaced frequency components

Rectangular window

High frequency resolution but large spectral leakage

Hamming window

Lower frequency resolution but smaller spectral leakage

Spectrum estimation with DFT

$$S_{\tilde{x}\tilde{x}}(e^{j\frac{2\pi k}{N}}) = |\sum_{n=0}^{N-1} x[n]e^{j\frac{2\pi k}{N}n}|^2$$

If a clearer picture is needed the data sequence can be padded with zeros to obtain values at more frequencies

(without increasing resolution). Resolution can be increased by using more data points

11 Useful Properties

$$\frac{dX(e^{j\omega})}{d\omega} = \frac{d}{d\omega} \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega} = \sum_{n=-\infty}^{\infty} -jnx[n]e^{-j\omega n}$$

Complex exponential shorthand

 $W_M^N = e^{-j2\pi N/M}$

Parseval's Theorem

$$\sum_{n=-\infty}^{\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(e^{j\omega})|^2 d\omega$$

Energy Density Spectrum

$$\delta_{xx}(e^{j\omega}) = |X(e^{j\omega})|^2 = X(e^{j\omega})X(e^{-j\omega})$$

Convolution

$$x[n] = x_1[n] * x_2[n] = \sum_{k=-\infty}^{\infty} x_1[k] x_2[n-k]$$

Modulation

$$x[n] = x_1[n]\cos(\omega_0 n)$$

$$X(e^{j\omega}) = \frac{1}{2}(X_1(e^{j(\omega+\omega_0)}) + X_1(e^{j(\omega-\omega_0)}))$$

Geometric Series

$$\sum_{k=0}^{\infty} r_k = \frac{1}{1-r}$$
$$\sum_{k=1}^{\infty} r_k = \frac{r}{1-r}$$

$$\sum_{n=0}^{\infty} (n+1)x^n = \frac{1}{(1-x)^2}$$

Obtaining an even/odd sequence

$$x_e[n] = \frac{x[n] + x[-n]}{2}$$
$$x_o[n] = \frac{x[n] - x[-n]}{2}$$

Frequency Response from Pole Zero Plot

 $|H(e^{j\omega})| = \frac{\Pi_{\rm zeroes} {\rm Vector \ length \ from \ zero \ to \ } \omega}{\Pi_{\rm poles} {\rm Vector \ length \ from \ pole \ to \ } \omega}$

$$\angle H(e^{j\omega}) = \sum_{\text{zeroes}} \angle z_i - \sum_{\text{poles}} \angle p_i$$

Integration by parts

$$\int u dv = uv - \int v du$$

Туре	Factor example	Decomposition
Linear factor	(<i>x</i> - 4)	$\frac{A}{x-4}$
Repeated linear factor	$(x-4)^2$	$\frac{A}{(x-4)} + \frac{B}{(x-4)^2}$
Quadratic irreducible factor	(x ² + 4)	$\frac{Ax+B}{(x^2+4)}$
Repeated quadratic irreducible factor	$(x^2 + 4)^2$	$\frac{Ax+B}{(x^2+4)} + \frac{Cx+D}{(x^2+4)^2}$

Partial fraction decomposition table

The z-Transform and Its Application to the Analysis of LTI Systems

Figure 3.13 A pair of complex-conjugate poles corresponds to causal signals with oscillatory behavior.

Sec. 3.1 The z-Transform

TABLE 3.1 CHARACTERISTIC FAMILIES OF SIGNALS WITH THEIR CORRESPONDING ROC

Figure 9.1 in Mitra. Spectral transformations in the discrete domain.

Table 9.1: Spect	ral transformations	of a low	pass filter with	a cutoff	frequency	wc.

Filter type	Spectral Transformation	Design Parameters
Lowpass	$z^{-1} = \frac{2^{-1} - \lambda}{1 - \lambda^{2^{-1}}}$	$\lambda = \frac{\sin\left(\frac{\omega_c - \hat{\omega}_c}{2}\right)}{\sin\left(\frac{\omega_c + \hat{\omega}_c}{2}\right)}$ $\hat{\omega}_c = \text{desired cutoff frequency}$
Highpass	$z^{-1} = -\frac{\hat{z}^{-1} + \lambda}{1 + \lambda \hat{z}^{-1}}$	$\lambda = -\frac{\cos\left(\frac{\omega_c + \hat{\omega}_c}{2}\right)}{\cos\left(\frac{\omega_c - \hat{\omega}_c}{2}\right)}$ $\hat{\omega}_c = \text{desired cutoff frequency}$
Bandpass	$z^{-1} = -\frac{\hat{z}^{-2} - \frac{2\lambda\rho}{\rho+1}\hat{z}^{-1} + \frac{\rho-1}{\rho+1}}{\frac{\rho-1}{\rho+1}\hat{z}^{-2} - \frac{2\lambda\rho}{\rho+1}\hat{z}^{-1} + 1}$	$\lambda = \frac{\cos\left(\frac{\hat{\omega}_{c2} + \hat{\omega}_{c1}}{2}\right)}{\cos\left(\frac{\hat{\omega}_{c2} - \hat{\omega}_{c1}}{2}\right)}$ $\rho = \cot\left(\frac{\hat{\omega}_{c2} - \hat{\omega}_{c1}}{2}\right)\tan\left(\frac{\omega_{c}}{2}\right)$ $\hat{\omega}_{c2}, \hat{\omega}_{c1} = \text{desired upper and}$ lower cutoff frequencies
Bandstop	$z^{-1} = \frac{\hat{z}^{-2} - \frac{2\lambda}{1+\rho}\hat{z}^{-1} + \frac{1-\rho}{1+\rho}}{\frac{1-\rho}{1+\rho}\hat{z}^{-2} - \frac{2\lambda}{1+\rho}\hat{z}^{-1} + 1}$	$\lambda = \frac{\cos\left(\frac{\hat{\omega}_{c2} + \hat{\omega}_{c1}}{2}\right)}{\cos\left(\frac{\hat{\omega}_{c2} - \hat{\omega}_{c1}}{2}\right)}$ $\rho = \tan\left(\frac{\hat{\omega}_{c2} - \hat{\omega}_{c1}}{2}\right)\tan\left(\frac{\omega_{c}}{2}\right)$ $\hat{\omega}_{c2}, \hat{\omega}_{c1} = \text{desired upper and}$ lower cutoff frequencies

Tables of Common Transform Pairs

2012 by Marc Ph. Stoecklin — marc@stoecklin.net — http://www.stoecklin.net/ — 2012-12-20 — version v1.5.3

Engineers and students in communications and mathematics are confronted with transformations such as the z-Transform, the Fourier transform, or the Laplace transform. Often it is quite hard to quickly find the appropriate transform in a book or the Internet, much less to have a comprehensive overview of transformation pairs and corresponding properties.

In this document I compiled a handy collection of the most common transform pairs and properties of the

- $\triangleright\,$ continuous-time frequency Fourier transform $(2\pi f),$
- \triangleright continuous-time pulsation Fourier transform (ω),
- $\triangleright \ \, \mathbf{z}\text{-}\mathbf{Transform},$
- ▷ discrete-time Fourier transform DTFT, and
- ▷ Laplace transform.

Please note that, before including a transformation pair in the table, I verified its correctness. Nevertheless, it is still possible that you may find errors or typos. I am very grateful to everyone dropping me a line and pointing out any concerns or typos.

Notation, Conventions, and Useful Formulas

Imaginary unit	$j^2 = -1$
Complex conjugate	$z = a + jb \longleftrightarrow z^* = a - jb$
Real part	$\Re \mathfrak{e} \left\{ f(t) \right\} = \tfrac{1}{2} \left[f(t) + f^*(t) \right]$
Imaginary part	$\Im\mathfrak{m}\left\{f(t)\right\} = \frac{1}{2j}\left[f(t) - f^*(t)\right]$
Dirac delta/Unit impulse	$\delta[n] = \begin{cases} 1, & n = 0\\ 0, & n \neq 0 \end{cases}$
Heaviside step/Unit step	$u[n] = egin{cases} 1, & n \geq 0 \ 0, & n < 0 \end{cases}$
Sine/Cosine	$\sin(x) = \frac{e^{jx} - e^{-jx}}{2j} \cos(x) = \frac{e^{jx} + e^{-jx}}{2}$
Sinc function	$\operatorname{sinc}(x) \equiv \frac{\sin(x)}{x}$ (unnormalized)
Rectangular function	$\operatorname{rect}(\frac{t}{T}) = \begin{cases} 1 & \text{if } t \leqslant \frac{T}{2} \\ 0 & \text{if } t > \frac{T}{2} \end{cases}$
Triangular function	triang $\left(\frac{t}{T}\right) = \operatorname{rect}\left(\frac{t}{T}\right) * \operatorname{rect}\left(\frac{t}{T}\right) = \begin{cases} 1 - \frac{ t }{T} & t \leq T \\ 0 & t > T \end{cases}$
Convolution	continuous-time: $(f * g)(t) = \int_{-\infty}^{+\infty} f(\tau) g^*(t-\tau) d\tau$
	discrete-time: $(u * v)[n] = \sum_{m=-\infty}^{\infty} u[m] v^*[n-m]$
Parseval theorem	general statement: $\int_{-\infty}^{+\infty} f(t)g^*(t)dt = \int_{-\infty}^{+\infty} F(f)G^*(f)df$
	continuous-time: $\int_{-\infty}^{+\infty} f(t) ^2 dt = \int_{-\infty}^{+\infty} F(f) ^2 df$
	discrete-time: $\sum_{n=-\infty}^{+\infty} x[n] ^2 = \frac{1}{2\pi} \int_{-\pi}^{+\pi} X(e^{j\omega}) ^2 d\omega$
Geometric series	$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x} \qquad \sum_{k=0}^{n} x^k = \frac{1-x^{n+1}}{1-x}$
	in general: $\sum_{k=m}^{n} x^k = \frac{x^m - x^{n+1}}{1-x}$

$f(t) = \mathcal{F}^{-1} \{ F(f) \} = \int_{-\infty}^{+\infty} f(t) e^{j2\pi f t} df$	$\overset{\mathcal{F}}{\longleftrightarrow}$	$F(f) = \mathcal{F} \left\{ f(t) \right\} = \int_{-\infty}^{+\infty} f(t) e^{-j2\pi f t} dt$
transform $f(t)$ time reversal $f(-t)$ complex conjugation $f^*(t)$ reversed conjugation $f^*(-t)$	$\begin{array}{c} \xrightarrow{\mathcal{F}} \\ \xrightarrow{\mathcal{F}} \\ \xrightarrow{\mathcal{F}} \\ \xrightarrow{\mathcal{F}} \\ \xrightarrow{\mathcal{F}} \\ \xrightarrow{\mathcal{F}} \end{array}$	$F(f)$ frequency reversal $F(-f)$ reversed conjugation $F^*(f)$ complex conjugation
$\begin{array}{c} f(t) \text{ is purely real} \\ f(t) \text{ is purely imaginary} \\ \text{even/symmetry} & f(t) = f^*(-t) \\ \text{odd/antisymmetry} & f(t) = -f^*(-t) \end{array}$	$\begin{array}{c} \xrightarrow{\mathcal{F}} \\ \xrightarrow{\mathcal{F}} \\ \xrightarrow{\mathcal{F}} \\ \xrightarrow{\mathcal{F}} \\ \xrightarrow{\mathcal{F}} \\ \xrightarrow{\mathcal{F}} \end{array}$	$\begin{split} F(f) &= F^*(-f) & \text{even/symmetry} \\ F(f) &= -F^*(-f) & \text{odd/antisymmetry} \\ F(f) & \text{is purely real} \\ F(f) & \text{is purely imaginary} \end{split}$
time shifting $f(t-t_0)$ $f(t)e^{j2\pi f_0 t}$ time scaling $f(af)$ $\frac{1}{ a }f\left(\frac{f}{a}\right)$	$\begin{array}{c} \xrightarrow{\mathcal{F}} \\ \xrightarrow{\mathcal{F}} \\ \xrightarrow{\mathcal{F}} \\ \xrightarrow{\mathcal{F}} \\ \xrightarrow{\mathcal{F}} \end{array}$	$F(f)e^{-j2\pi ft_0}$ $F(f - f_0) \qquad \text{frequency shifting}$ $\frac{1}{ a }F\left(\frac{f}{a}\right)$ $F(af) \qquad \text{frequency scaling}$
linearity $af(t) + bg(t)$ time multiplication $f(t)g(t)$ frequency convolution $f(t) * g(t)$	$\begin{array}{c} \stackrel{\mathcal{F}}{\longleftrightarrow} \\ \stackrel{\mathcal{F}}{\longleftrightarrow} \\ \stackrel{\mathcal{F}}{\longleftrightarrow} \end{array}$	aF(f) + bG(t) F(f) * G(f) frequency convolution F(f)G(f) frequency multiplication
$\begin{array}{c} \text{delta function} & \delta(t) \\ \text{shifted delta function} & \delta(t-t_0) \\ & 1 \\ & e^{j2\pi f_0 t} \end{array}$	$\begin{array}{c} \stackrel{\mathcal{F}}{\longleftrightarrow} \\ \stackrel{\mathcal{F}}{\longleftrightarrow} \\ \stackrel{\mathcal{F}}{\longleftrightarrow} \\ \stackrel{\mathcal{F}}{\longleftrightarrow} \\ \stackrel{\mathcal{F}}{\longleftrightarrow} \end{array}$	$ \begin{array}{c} 1 \\ e^{-j2\pi ft_0} \\ \delta(f) \\ \delta(f-f_0) \end{array} \qquad \qquad \text{delta function} \end{array} $
two-sided exponential decay $e^{-a t }$ $a > 0$ $e^{-\pi t^2}$ $e^{j\pi t^2}$	$\begin{array}{c} \xrightarrow{\mathcal{F}} \\ \xleftarrow{\mathcal{F}} \\ \xleftarrow{\mathcal{F}} \\ \xleftarrow{\mathcal{F}} \\ \xleftarrow{\mathcal{F}} \end{array} \end{array}$	$\begin{array}{c} \frac{2a}{a^2+4\pi^2 f^2} \\ e^{-\pi f^2} \\ e^{j\pi \left(\frac{1}{4}-f^2\right)} \end{array}$
sine $sin (2\pi f_0 t + \phi)$ cosine $cos (2\pi f_0 t + \phi)$ sine modulation $f(t) sin (2\pi f_0 t)$ cosine modulation $f(t) cos (2\pi f_0 t)$ squared sine $sin^2 (t)$ squared cosine $cos^2 (t)$	$\begin{array}{c} \xrightarrow{\mathcal{F}} \\ \xleftarrow{\mathcal{F}} \\$	$ \frac{j}{2} \left[e^{-j\phi} \delta \left(f + f_0 \right) - e^{j\phi} \delta \left(f - f_0 \right) \right] \frac{1}{2} \left[e^{-j\phi} \delta \left(f + f_0 \right) + e^{j\phi} \delta \left(f - f_0 \right) \right] \frac{j}{2} \left[F \left(f + f_0 \right) - F \left(f - f_0 \right) \right] \frac{1}{2} \left[F \left(f + f_0 \right) + F \left(f - f_0 \right) \right] \frac{1}{4} \left[2\delta(f) - \delta \left(f - \frac{1}{\pi} \right) - \delta \left(f + \frac{1}{\pi} \right) \right] \frac{1}{4} \left[2\delta(f) + \delta \left(f - \frac{1}{\pi} \right) + \delta \left(f + \frac{1}{\pi} \right) \right] $
rectangularrect $\left(\frac{t}{T}\right) = \begin{cases} 1 & t \leqslant \frac{T}{2} \\ 0 & t > \frac{T}{2} \end{cases}$ triangulartriang $\left(\frac{t}{T}\right) = \begin{cases} 1 - \frac{ t }{T} & t \leqslant T \\ 0 & t > T \end{cases}$ triang (t)t	$ \stackrel{\mathcal{F}}{\longleftrightarrow} $	$T \operatorname{sinc} Tf$ $T \operatorname{sinc}^2 Tf$
step $u(t) = 1_{[0,+\infty]}(t) = \begin{cases} 0 & t < 0 \\ 0 & t < 0 \end{cases}$ signum $\operatorname{sgn}(t) = \begin{cases} 1 & t \ge 0 \\ -1 & t < 0 \end{cases}$ sinc $\operatorname{sinc}(Bt)$ squared sinc $\operatorname{sinc}^2(Bt)$	$\begin{array}{c} \longleftrightarrow\\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	$\frac{j2\pi f}{j2\pi f} + o(f)$ $\frac{1}{j\pi f}$ $\frac{1}{B} \operatorname{rect}\left(\frac{f}{B}\right) = \frac{1}{B} \mathbb{1}_{\left[-\frac{B}{2}, +\frac{B}{2}\right]}(f)$ $\frac{1}{B} \operatorname{triang}\left(\frac{f}{B}\right)$
n-th time derivative $\frac{d^n}{dt^n}f(t)$ n-th frequency derivative $t^n f(t)$ $\frac{1}{1+t^2}$	$\begin{array}{c} \xrightarrow{\mathcal{F}} \\ \xrightarrow{\mathcal{F}} \\ \xrightarrow{\mathcal{F}} \\ \xleftarrow{\mathcal{F}} \end{array} \end{array}$	$(j2\pi f)^n F(f)$ $\frac{1}{(-j2\pi)^n} \frac{d^n}{df^n} F(f)$ $\pi e^{-2\pi f }$

Table of Continuous-time Frequency Fourier Transform Pairs

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$x(t) = \mathcal{F}_{\omega}^{-1} \left\{ X(\omega) \right\} = \int_{-\infty}^{+\infty} x(t) e^{j\omega t} d\omega$	$\xleftarrow{\mathcal{F}_{\omega}}{\mathcal{F}_{\omega}}$	$X(\omega) = \mathcal{F}_{\omega} \left\{ x(t) \right\} = \int_{-\infty}^{+\infty} x(t) e^{-j\omega t} dt$
time reversal $x(-t)$ $\langle \overline{x}_{w} \\ X(-\omega)$ frequency reversal complex conjugation $x^{*}(-t)$ $\langle \overline{x}_{w} \\ X'(-\omega)$ reversed conjugation $x^{*}(-t)$ $\langle \overline{x}_{w} \\ X'(-\omega)$ complex conjugation $x^{*}(-t)$ $\langle \overline{x}_{w} \\ X'(-\omega)$ complex conjugation $x^{*}(-t)$ $\langle \overline{x}_{w} \\ X(f) = X^{*}(-\omega)$ even/symmetry $x(t)$ is purely maginary $\langle \overline{x}_{w} \\ X(f) = -X^{*}(-\omega)$ odd/antisymmetry $x(t) = x^{*}(-t)$ $\langle \overline{x}_{w} \\ X(\omega)$ is purely maginary $x(t) = x^{*}(-t)$ $\langle \overline{x}_{w} \\ X(\omega)$ is purely maginary $X(\omega)$ is purely maginary $X(\omega)$ is purely maginary $X(\omega)$ is purely maginary $x(t) = x^{*}(-t)$ $\langle \overline{x}_{w} \\ X(\omega) = x^{*}(-t)$ frequency saling $x^{*}(t) = x^{*}(t)$ $\langle \overline{x}_{w} \\ x^{*}(z) \\$	transform $x(t)$	$\xleftarrow{\mathcal{F}_{\omega}}$	$X(\omega)$
$\begin{array}{c} \mbox{conjugation} & x^*(t) & z_{\infty}^{\infty} & X^*(-\omega) & \mbox{reversed conjugation} \\ x^*(t) \ is purely real \\ x^*(t) \ is purely majnary \\ x^*(t) \ x^*(t) \ x^*(-t) \\ x^*(\omega) \ is purely majnary \\ x^*(t) \ x^*(t) \ x^*(-t) \\ z^*(\omega) \ x^*(\omega) \ is purely majnary \\ x^*(t) \ x^*(t) \ x^*(t) \ x^*(t) \ x^*(\omega) \ x^*(\omega) \ is purely majnary \\ x^*(t) \ x^*(t) \ x^*(t) \ x^*(t) \ x^*(t) \ x^*(\omega) \ x^*(\omega$	time reversal $x(-t)$	$\xleftarrow{\mathcal{F}_{\omega}}$	$X(-\omega)$ frequency reversal
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	complex conjugation $x^*(t)$	$\xleftarrow{\mathcal{F}_{\omega}}$	$X^*(-\omega)$ reversed conjugation
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	reversed conjugation $x^*(-t)$	$\stackrel{\mathcal{F}_{\omega}}{\longleftrightarrow}$	$X^*(\omega)$ complex conjugation
$\begin{array}{c cccc} \operatorname{even}/\operatorname{symmetry} & x(t) = x^*(-t) & \stackrel{x_{}}{x_{}} & X(\omega) \text{ is purely real} \\ \operatorname{odd/antisymmetry} & x(t) = -x^*(-t) & \stackrel{x_{}}{x_{}} & X(\omega) \text{ is purely imaginary} \\ \end{array}$ $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	x(t) is purely real x(t) is purely imaginary	$\xrightarrow{\mathcal{F}_{\omega}}$ $\xrightarrow{\mathcal{F}_{\omega}}$	$X(f) = X^*(-\omega) \qquad \text{even/symmetry}$ $X(f) = -X^*(-\omega) \qquad \text{odd/antisymmetry}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	even/symmetry $x(t) = x^*(-t)$	$\xrightarrow{\mathcal{F}_{\omega}}$	$X(\omega)$ is purely real
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	odd/antisymmetry $x(t) = -x^*(-t)$	$\stackrel{\mathcal{F}_{\omega}}{\longleftrightarrow}$	$X(\omega)$ is purely imaginary
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		\mathcal{F}_{ω}	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	time shifting $x(t-t_0)$	$\underset{\mathcal{F}_{\omega}}{\longleftrightarrow}$	$X(\omega)e^{-j\omega t_0}$
$\begin{array}{cccc} & x(a) & x(a)$	$x(t)e^{j\omega_0 t}$	$\langle \mathcal{F}_{\omega} \rangle$	$X(\omega - \omega_0)$ frequency shifting $1 - V(\omega)$
$\begin{split} & \left \begin{array}{cccc} \left $	time scaling $x(a_j)$	$\overleftarrow{\mathcal{F}}_{\omega}$	$\frac{ a }{ a } \Lambda \left(\frac{ a }{a}\right)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{1}{ a }x\left(rac{j}{a} ight)$	\Leftrightarrow	$X(a\omega)$ frequency scaling
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	linearity $ax_1(t) + bx_2(t)$	$\xleftarrow{\mathcal{F}_{\omega}}$	$aX_1(\omega) + bX_2(\omega)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	time multiplication $x_1(t)x_2(t)$	$\stackrel{\mathcal{F}_{\omega}}{\longleftrightarrow}$	$\frac{1}{2\pi}X_1(\omega) * X_2(\omega)$ frequency convolution
$\begin{array}{cccc} \operatorname{delta function} & \delta(t) & \langle \overline{F_{\omega}} & 1 \\ \operatorname{shifted delta function} & \delta(t-t_0) & \langle \overline{F_{\omega}} & e^{-j\omega t_0} \\ 1 & \langle \overline{F_{\omega}} & 2\pi\delta(\omega) & \operatorname{delta function} \\ e^{j\omega u^t} & \langle \overline{F_{\omega}} & 2\pi\delta(\omega-\omega_0) & \operatorname{shifted delta function} \\ \end{array}$ $\begin{array}{cccccccccccccccccccccccccccccccccccc$	frequency convolution $x_1(t) * x_2(t)$	$\stackrel{\mathcal{F}_{\omega}}{\longleftrightarrow}$	$X_1(\omega)X_2(\omega)$ frequency multiplication
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	dolta function	\mathcal{F}_{ω}	1
sinted defa function $b(t-t_0)$ $\overleftarrow{F_{\omega}}$ $b e^{f(t-t_0)}$ $e^{f\omega_0 t}$ $\overleftarrow{F_{\omega}}$ $2\pi\delta(\omega)$ delta function $e^{f\omega_0 t}$ $\overleftarrow{F_{\omega}}$ $2\pi\delta(\omega-\omega_0)$ shifted delta function $e^{j\omega_0 t}$ $\overleftarrow{F_{\omega}}$ $\frac{2\pi}{a+j\omega}$ $e^{j\omega_0 t}$ $\overleftarrow{F_{\omega}}$ $\frac{2\pi}{a+j\omega}$ $e^{i\omega_0 t}$ $\frac{F_{\omega}}{a+j\omega}$ $\frac{1}{a+j\omega}$ $e^{i\omega_0 t}$ $\frac{F_{\omega}}{a+j\omega}$ $\frac{1}{a-j\omega}$ $e^{i\omega_0 t}$ $e^{i\omega_0 t}$ $\frac{F_{\omega}}{a+i\omega}$ $\frac{1}{a-j\omega}$ $e^{i\omega_0 t}$ $\frac{F_{\omega}}{a+i\omega}$ $\frac{1}{a-j\omega}$ $e^{i\omega_0 t}$ $\frac{F_{\omega}}{a+i\omega}$ $\frac{1}{a-j\omega}$ $e^{i\omega_0 t}$ $\frac{F_{\omega}}{a+i\omega}$ $\frac{1}{a-j\omega}$ $e^{i\omega_0 t}$ $\frac{F_{\omega}}{a+i\omega}$ $\frac{1}{a-j\omega}$ $\frac{F_{\omega}}{a+i\omega}$ $\pi\left[e^{-j\phi}\delta(\omega+\omega_0) - e^{j\phi}\delta(\omega-\omega_0)\right]$ sine modulation $x(t)\sin(\omega_0 t)$ $\frac{F_{\omega}}{a+i\omega}$ $\frac{1}{2}\left[X(\omega+\omega_0) - X(\omega-\omega_0)\right]$ $\frac{F_{\omega}}}{a_{\mu}}$ $\frac{1}{2}\left[X(\omega+\omega_0) - X(\omega-\omega_0)\right]$ $\frac{F_{\omega}}}{a_{\mu}}$ $\frac{1}{2}\left[X(\omega+\omega_0) + X(\omega-\omega_0)\right]$ $\frac{F_{\omega}}}{a_{\mu}}$ 1	delta function $o(t)$	$\langle \mathcal{F}_{\omega} \rangle$	$1 = -i\omega t_0$
$\frac{1}{e^{j\omega_0 t}} \overleftarrow{F_\omega} 2\pi\delta(\omega) \text{deta function}$ $e^{j\omega_0 t} \overleftarrow{F_\omega} 2\pi\delta(\omega - \omega_0) \text{shifted delta function}$ two-sided exponential decay $e^{-at}u(t) \Re\{a\} > 0$ $\frac{F_\omega}{e^{2}x^{-2}} \overleftarrow{F_\omega} \frac{a^2}{a^2 + \omega^2}$ exponential decay $e^{-at}u(-t) \Re\{a\} > 0$ $\frac{F_\omega}{e^{\frac{1}{2}x^2}} \overleftarrow{F_\omega} \frac{1}{a^{\frac{1}{4}j\omega}}$ reversed exponential decay $e^{-at}u(-t) \Re\{a\} > 0$ $\frac{F_\omega}{e^{\frac{1}{2}x^2}} \overleftarrow{F_\omega} \sigma\sqrt{2\pi}e^{-\frac{a^2\omega^2}{2}}$ sine $\sin(\omega_0 t + \phi) \overleftarrow{F_\omega} j\pi \left[e^{-j\phi}\delta(\omega + \omega_0) - e^{j\phi}\delta(\omega - \omega_0)\right]$ cosine $\cos(\omega_0 t + \phi) \overleftarrow{F_\omega} \pi \left[e^{-j\phi}\delta(\omega + \omega_0) + e^{j\phi}\delta(\omega - \omega_0)\right]$ cosine $\cos(\omega_0 t + \phi) \overleftarrow{F_\omega} \pi \left[e^{-j\phi}\delta(\omega + \omega_0) - e^{j\phi}\delta(\omega - \omega_0)\right]$ cosine $\cos(\omega_0 t) \overleftarrow{F_\omega} \frac{1}{2}\left[X(\omega + \omega_0) - X(\omega - \omega_0)\right]$ cosine $\sin^2(\omega_0 t) \overleftarrow{F_\omega} \pi^2 \left[2\delta(f) - \delta(\omega - \omega_0) - \delta(\omega + \omega_0)\right]$ squared sine $\sin^2(\omega_0 t) \overleftarrow{F_\omega} \pi^2 \left[2\delta(f) - \delta(\omega - \omega_0) + \delta(\omega + \omega_0)\right]$ rectangular $\operatorname{rect}\left(\frac{t}{T}\right) = \begin{cases} 1 t \leq \frac{T}{2} \\ 0 t > $	shifted delta function $\delta(t-t_0)$	$\underset{\mathcal{F}_{\omega}}{\longleftrightarrow}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I iwot	$\overleftarrow{\mathcal{F}}_{\omega}$	$2\pi\delta(\omega)$ delta function
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e ^{r~0*}	\Leftrightarrow	$2\pi\delta(\omega-\omega_0)$ shifted delta function
$\begin{array}{cccc} \operatorname{exponential decay} & e^{-at}u(t) \ \Re\{a\} > 0 & \stackrel{\checkmark}{\xrightarrow{F_{\omega}}} & \frac{1}{a+j\omega} \\ \operatorname{reversed exponential decay} & e^{-at}u(-t) \ \Re\{a\} > 0 & \stackrel{\swarrow}{\xrightarrow{F_{\omega}}} & \frac{1}{a-j\omega} \\ & e^{\frac{1}{2}\frac{t^2}{2\sigma^2}} & \stackrel{\swarrow}{\xrightarrow{F_{\omega}}} & \sigma\sqrt{2\pi}e^{-\frac{\sigma^2\omega^2}{2}} \\ \end{array}$ $\begin{array}{cccccccccccccccccccccccccccccccccccc$	two-sided exponential decay $e^{-a t }$ $a > 0$	$\stackrel{\mathcal{F}_{\omega}}{\longleftrightarrow}$	$\frac{2a}{a^2+\omega^2}$
$\begin{array}{c cccc} \operatorname{reversed exponential decay} & e^{-at}u(-t) & \Re\{a\} > 0 & & \stackrel{\mathcal{F}_{\omega}}{\underset{e}{\frac{t^{2}}{2\sigma^{2}}}} & \frac{1}{a-j\omega} \\ & & e^{\frac{t^{2}}{2\sigma^{2}}} & & \sigma\sqrt{2\pi}e^{-\frac{\sigma^{2}\omega^{2}}{2}} \end{array}$ $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	exponential decay $e^{-at}u(t) \Re\{a\} > 0$	\longleftrightarrow	$\frac{1}{a+j\omega}$
$e^{\frac{t^2}{2\sigma^2}} \overleftarrow{F_{\omega}} \qquad \sigma\sqrt{2\pi}e^{-\frac{\sigma^2\omega^2}{2}}$ sine $\sin(\omega_0 t + \phi) \overleftarrow{F_{\omega}} \qquad j\pi \left[e^{-j\phi}\delta\left(\omega + \omega_0\right) - e^{j\phi}\delta\left(\omega - \omega_0\right)\right]$ cosine $\cos(\omega_0 t + \phi) \overleftarrow{F_{\omega}} \qquad \pi \left[e^{-j\phi}\delta\left(\omega + \omega_0\right) - e^{j\phi}\delta\left(\omega - \omega_0\right)\right]$ sine modulation $x(t)\sin(\omega_0 t) \overleftarrow{F_{\omega}} \qquad \pi \left[e^{-j\phi}\delta\left(\omega + \omega_0\right) - x\left(\omega - \omega_0\right)\right]$ cosine modulation $x(t)\cos(\omega_0 t) \overleftarrow{F_{\omega}} \qquad \frac{1}{2}\left[X\left(\omega + \omega_0\right) - X\left(\omega - \omega_0\right)\right]$ squared sine $\sin^2(\omega_0 t) \overleftarrow{F_{\omega}} \qquad \pi^2 \left[2\delta(f) - \delta\left(\omega - \omega_0\right) - \delta\left(\omega + \omega_0\right)\right]$ squared cosine $\cos^2(\omega_0 t) \overleftarrow{F_{\omega}} \qquad \pi^2 \left[2\delta(\omega) + \delta\left(\omega - \omega_0\right) + \delta\left(\omega + \omega_0\right)\right]$ rectangular $\operatorname{rect}\left(\frac{t}{T}\right) = \begin{cases} 1 & t \leqslant \frac{T}{2} \\ 0 & t > \frac{T}{2} \end{cases} \qquad T \operatorname{sinc}\left(\frac{\omega T}{2}\right)$ triangular $\operatorname{triang}\left(\frac{t}{T}\right) = \begin{cases} 1 - \frac{t!}{T} & t \leqslant T \\ 0 & t > T \end{cases} \qquad T \operatorname{sinc}^2\left(\frac{\omega T}{2}\right)$ step $u(t) = 1_{[0,+\infty]}(t) = \begin{cases} 1 & t \ge 0 \\ 0 & t < 0 \end{cases} \qquad \pi\delta(f) + \frac{1}{j\omega}$ signum $\operatorname{sgn}(t) = \begin{cases} 1 & t \ge 0 \\ -1 & t < 0 \end{cases} \qquad \frac{F_{\omega}}{2j\omega} \qquad \frac{2}{j\omega}$ sinc $\sin(Tt) \qquad \overleftarrow{F_{\omega}} \qquad \frac{1}{T} \operatorname{rect}\left(\frac{\omega}{2\pi T}\right) = \frac{1}{T} 1_{[-\pi T, +\pi T]}(f)$ squared sinc $\operatorname{sinc}^2(Tt) \qquad \overleftarrow{F_{\omega}} \qquad \frac{1}{T} \operatorname{triang}\left(\frac{\omega}{2\pi T}\right)$	reversed exponential decay $e^{-at}u(-t)$ $\Re\{a\} > 0$	$\stackrel{\mathcal{F}_{\omega}}{\longleftrightarrow}$	$\frac{1}{a-j\omega}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$e^{rac{t^2}{2\sigma^2}}$	$\stackrel{\mathcal{F}_{\omega}}{\longleftrightarrow}$	$\sigma\sqrt{2\pi}e^{-\frac{\sigma^2\omega^2}{2}}$
$\begin{array}{cccc} & \sin(\omega_{0}v + \psi) & \overleftarrow{\langle T_{\omega} \rangle} & f_{\omega} \left[v + 0 \left(\omega + \omega_{0} \right) + v + 0 \left(\omega + \omega_{0} \right) \right] \\ \text{sine modulation} & x(t) \sin(\omega_{0}t) & \overleftarrow{\langle T_{\omega} \rangle} & \frac{1}{2} \left[X \left(\omega + \omega_{0} \right) + v + 0 \left(\omega + \omega_{0} \right) \right] \\ \text{squared sine} & x(t) \cos(\omega_{0}t) & \overleftarrow{\langle T_{\omega} \rangle} & \frac{1}{2} \left[X \left(\omega + \omega_{0} \right) - X \left(\omega - \omega_{0} \right) \right] \\ \text{squared sine} & \sin^{2} \left(\omega_{0}t \right) & \overleftarrow{\langle T_{\omega} \rangle} & \pi^{2} \left[2\delta(f) - \delta \left(\omega - \omega_{0} \right) - \delta \left(\omega + \omega_{0} \right) \right] \\ \text{squared cosine} & \cos^{2} \left(\omega_{0}t \right) & \overleftarrow{\langle T_{\omega} \rangle} & \pi^{2} \left[2\delta(f) - \delta \left(\omega - \omega_{0} \right) - \delta \left(\omega + \omega_{0} \right) \right] \\ \text{rectangular} & \operatorname{rect} \left(\frac{t}{T} \right) = \begin{cases} 1 & t \leqslant \frac{T}{2} \\ 0 & t > \frac{T}{2} \end{cases} & \overleftarrow{\langle T_{\omega} \rangle} & \pi^{2} \left[2\delta(\omega) + \delta \left(\omega - \omega_{0} \right) + \delta \left(\omega + \omega_{0} \right) \right] \\ \text{triangular} & \operatorname{triang} \left(\frac{t}{T} \right) = \begin{cases} 1 & t \leqslant \frac{T}{2} \\ 0 & t > T \\ 0 & t > T \end{cases} & \overrightarrow{\langle T_{\omega} \rangle} & T \operatorname{sinc}^{2} \left(\frac{\omega T}{2} \right) \\ \text{step} & u(t) = 1_{[0,+\infty]}(t) = \begin{cases} 1 & t \ge 0 \\ 0 & t < 0 \end{cases} & \overleftarrow{\langle T_{\omega} \rangle} & \pi\delta(f) + \frac{1}{j\omega} \\ \text{signum} & \operatorname{sgn}(t) = \begin{cases} 1 & t \ge 0 \\ -1 & t < 0 \end{cases} & \overleftarrow{\langle T_{\omega} \rangle} & \frac{T}{j\omega} \\ \frac{T}{j\omega} & \frac{T}{j\omega} & \frac{T}{j\omega} \\ \frac{T}{j\omega} & \frac{T}{j\omega} & \frac{T}{j\omega} \\ \text{squared sinc} & \operatorname{sinc}^{2} (Tt) & \overleftarrow{\langle T_{\omega} \rangle} & \frac{T}{T} \operatorname{triang} \left(\frac{\omega}{2\pi T} \right) = \frac{1}{T} 1_{[-\pi T, +\pi T]}(f) \\ \text{squared sinc} & \operatorname{sinc}^{2} (Tt) & \overleftarrow{\langle T_{\omega} \rangle} & \frac{T}{j} & \frac{T}{m} \\ \frac{T}{m} & \frac{T}{m} \left(\frac{\omega}{2\pi T} \right) \\ n-\text{th time derivative} & \frac{d^{n}_{t} f_{t}}{dt^{n}} f(t) & \overleftarrow{\langle T_{\omega} \rangle} & j^{n} \frac{d^{n}_{t}}{dt^{n}} X(\omega) \\ \text{time inverse} & \frac{1}{t} & \overleftarrow{\langle T_{\omega} \rangle} & \frac{1}{t} \\ \end{array}$	sing $\sin(\omega_0 t \pm \phi)$	\mathcal{F}_{ω}	$i\pi \left[e^{-j\phi}\delta(\omega+\omega_0)-e^{j\phi}\delta(\omega-\omega_0)\right]$
$\begin{array}{cccc} \operatorname{conne} & \operatorname{con}(\omega_{0}\circ + \varphi) & \overleftarrow{\tau_{\omega}} & \operatorname{re}\left[i & \operatorname{con}\left(\omega_{0}\circ + \varphi\right) & \overleftarrow{\tau_{\omega}} & \operatorname{re}\left[i & \operatorname{con}\left(\omega_{0}\circ + \omega_{0}\right) + i & \operatorname{con}\left(\omega_{0}\circ - \omega_{0}\right) \right] \\ \operatorname{sequared sine} & x(t) \cos\left(\omega_{0}t\right) & \overleftarrow{\tau_{\omega}} & \frac{i}{2}\left[X\left(\omega + \omega_{0}\right) - X\left(\omega - \omega_{0}\right) \right] \\ \operatorname{squared sine} & \sin^{2}\left(\omega_{0}t\right) & \overleftarrow{\tau_{\omega}} & \pi^{2}\left[2\delta(f) - \delta\left(\omega - \omega_{0}\right) - \delta\left(\omega + \omega_{0}\right) \right] \\ \operatorname{squared cosine} & \cos^{2}\left(\omega_{0}t\right) & \overleftarrow{\tau_{\omega}} & \pi^{2}\left[2\delta(\omega) + \delta\left(\omega - \omega_{0}\right) - \delta\left(\omega + \omega_{0}\right) \right] \\ \operatorname{rectangular} & \operatorname{rect}\left(\frac{t}{T}\right) = \begin{cases} 1 & t \leqslant \frac{T}{2} \\ 0 & t > \frac{T}{2} \\ 0 & t > T \\ \end{array} & T \operatorname{sinc}\left(\frac{\omega T}{2}\right) \\ \operatorname{step} & u(t) = 1_{[0,+\infty]}(t) = \begin{cases} 1 & t \geqslant 0 \\ 0 & t < 0 \\ 0 & t < 0 \\ 0 & t < 0 \\ -1 & t < 0 \\ -1 & t < 0 \\ \end{array} & \overrightarrow{\tau_{\omega}} & \pi\delta(f) + \frac{1}{j\omega} \\ \operatorname{sinc} & \operatorname{sinc}\left(Tt\right) & \overleftarrow{\tau_{\omega}} & \frac{1}{T}\operatorname{rect}\left(\frac{\omega}{2\pi T}\right) = \frac{1}{T}1_{[-\pi T, +\pi T]}(f) \\ \operatorname{squared sinc} & \operatorname{sinc}^{2}\left(Tt\right) & \overleftarrow{\tau_{\omega}} & \frac{1}{T}\operatorname{riang}\left(\frac{\omega}{2\pi T}\right) \\ n-\text{th time derivative} & \frac{d^{n}_{n}}{dt^{n}}f(t) & \overleftarrow{\tau_{\omega}} & j^{n}\frac{d^{n}_{n}}{dt^{n}}X(\omega) \\ \operatorname{time inverse} & \frac{1}{t} & \overleftarrow{\tau_{\omega}} & \frac{1}{t} & \overleftarrow{\tau_{\omega}} \\ \end{array}$	cosine $\cos\left(\omega_0 t + \phi\right)$	\mathcal{F}_{ω}	$\pi \left[e^{-j\phi} \delta(\omega + \omega_0) + e^{j\phi} \delta(\omega - \omega_0) \right]$
$\begin{array}{cccc} \text{cosine modulation} & x(t) \cos(\omega_0 t) & \overleftarrow{\mathcal{F}}_{\omega} & \frac{1}{2} \left[X \left(\omega + \omega_0 \right) + X \left(\omega - \omega_0 \right) \right] \\ \text{squared sine} & \sin^2 \left(\omega_0 t \right) & \overleftarrow{\mathcal{F}}_{\omega} & \pi^2 \left[2\delta(f) - \delta \left(\omega - \omega_0 \right) - \delta \left(\omega + \omega_0 \right) \right] \\ \text{squared cosine} & \cos^2 \left(\omega_0 t \right) & \overleftarrow{\mathcal{F}}_{\omega} & \pi^2 \left[2\delta(\omega) + \delta \left(\omega - \omega_0 \right) + \delta \left(\omega + \omega_0 \right) \right] \\ \text{rectangular} & \operatorname{rect} \left(\frac{t}{T} \right) = \begin{cases} 1 & t \leqslant \frac{T}{2} \\ 0 & t > \frac{T}{2} \\ 0 & t > T \end{cases} & \mathcal{F}_{\omega} & T \operatorname{sinc} \left(\frac{\omega T}{2} \right) \\ \text{step} & u(t) = 1_{[0,+\infty]}(t) = \begin{cases} 1 & t \geqslant 0 \\ 0 & t < 0 \\ 0 & t < 0 \end{cases} & \overleftarrow{\mathcal{F}}_{\omega} & \pi\delta(f) + \frac{1}{j\omega} \\ \text{signum} & \operatorname{sgn}(t) = \begin{cases} 1 & t \geqslant 0 \\ -1 & t < 0 \\ -1 & t < 0 \end{cases} & \overleftarrow{\mathcal{F}}_{\omega} & \frac{2}{j\omega} \\ \frac{1}{T} \operatorname{rect} \left(\frac{\omega}{2\pi T} \right) = \frac{1}{T} 1_{[-\pi T, +\pi T]}(f) \\ \text{squared sinc} & \operatorname{sinc}^2(Tt) & \overleftarrow{\mathcal{F}}_{\omega} & \frac{1}{T} \operatorname{triang} \left(\frac{\omega}{2\pi T} \right) \\ n-\text{th time derivative} & t^n f(t) & \overleftarrow{\mathcal{F}}_{\omega} & j^n \frac{d^n}{dt^n} X(\omega) \\ \text{time inverse} & \frac{1}{t} & \overleftarrow{\mathcal{F}}_{\omega} & -j\pi \operatorname{sgn}(\omega) \end{cases}$	sine modulation $x(t) \sin(\omega_0 t)$	$\xrightarrow{\mathcal{F}_{\omega}}$	$\frac{j}{2} \left[X \left(\omega + \omega_0 \right) - X \left(\omega - \omega_0 \right) \right]$
$\begin{aligned} & \text{squared sine} \text{inclusion} \text{is} b(t) \cos(\psi_0 t) \overleftarrow{\leftarrow} \frac{1}{2} \left[P(\psi_0 + \omega_0) + P(\psi_0 - \omega_0) \right] \\ & \text{squared sine} \sin^2(\omega_0 t) \overleftarrow{\leftarrow} \frac{1}{2} \\ & \text{squared cosine} \cos^2(\omega_0 t) \overleftarrow{\leftarrow} \frac{1}{2} \\ & \text{squared cosine} \cos^2(\omega_0 t) \overleftarrow{\leftarrow} \frac{1}{2} \\ & \text{step} \text{triang} \left(\frac{t}{T}\right) = \begin{cases} 1 & t \leq \frac{T}{2} \\ 0 & t > \frac{T}{2} \\ 0 & t > T \end{cases} T \operatorname{sinc} \left(\frac{\omega T}{2}\right) \\ & \text{step} u(t) = 1_{[0,+\infty]}(t) = \begin{cases} 1 & t \geq 0 \\ 0 & t < 0 \\ -1 & t < 0 \end{cases} \overleftarrow{\leftarrow} \frac{T}{2} \\ & \text{step} u(t) = 1_{[0,+\infty]}(t) = \begin{cases} 1 & t \geq 0 \\ -1 & t < 0 \\ -1 & t < 0 \end{cases} \overrightarrow{\leftarrow} \frac{T}{2} \\ & \text{step} \frac{1}{T} \operatorname{rect} \left(\frac{\omega}{2\pi T}\right) = \frac{1}{T} 1_{[-\pi T, +\pi T]}(f) \\ & \text{squared sinc} \sin^2(Tt) \overleftarrow{\leftarrow} \frac{T}{2} \\ & \text{step} \frac{1}{T} \operatorname{triang} \left(\frac{\omega}{2\pi T}\right) = \frac{1}{T} 1_{[-\pi T, +\pi T]}(f) \\ & \text{squared sinc} \frac{d^n}{dt^n} f(t) \overleftarrow{\leftarrow} \\ & \overrightarrow{\leftarrow} j^n \frac{d^n}{dt^n} X(\omega) \\ & n \text{-th frequency derivative} t^n f(t) \overleftarrow{\leftarrow} \\ & \frac{T}{2} \\ $	cosine modulation $r(t) \cos(\omega_0 t)$	$\xrightarrow{\mathcal{F}_{\omega}}$	$\frac{1}{2} \left[X \left(\omega + \omega_0 \right) + X \left(\omega - \omega_0 \right) \right]$
$\begin{array}{cccc} \operatorname{squared coinc} & \operatorname{inf} (\mathfrak{G}_{0}\mathfrak{l}) & \overleftarrow{\leftarrow} & \operatorname{inf} (\mathfrak{g}_{0}\mathfrak{l}) & \overleftarrow{\leftarrow} & \mathfrak{g}_{0} & \mathfrak{g}_{0}$	squared sine $\sin^2(\omega_0 t)$	$\xrightarrow{\mathcal{F}_{\omega}}$	$\frac{\pi^2 [2\delta(f) - \delta(\omega - \omega_0) - \delta(\omega + \omega_0)]}{\pi^2 [2\delta(f) - \delta(\omega - \omega_0) - \delta(\omega + \omega_0)]}$
$\begin{array}{cccc} \operatorname{rect} & \operatorname{rect} \left(\frac{t}{T} \right) = \begin{cases} 1 & t \leqslant \frac{T}{2} \\ 0 & t > \frac{T}{2} \end{cases} & \xrightarrow{\mathcal{F}_{\omega}} & T \operatorname{sinc} \left(\frac{\omega T}{2} \right) \\ \operatorname{triangular} & \operatorname{triang} \left(\frac{t}{T} \right) = \begin{cases} 1 - \frac{ t }{T} & t \leqslant T \\ 0 & t > T \end{cases} & \xrightarrow{\mathcal{F}_{\omega}} & T \operatorname{sinc}^2 \left(\frac{\omega T}{2} \right) \\ \operatorname{step} & u(t) = 1_{[0,+\infty]}(t) = \begin{cases} 1 & t \geqslant 0 \\ 0 & t < 0 \end{cases} & \xrightarrow{\mathcal{F}_{\omega}} & \pi \delta(f) + \frac{1}{j\omega} \\ \operatorname{signum} & \operatorname{sgn}(t) = \begin{cases} 1 & t \geqslant 0 \\ -1 & t < 0 \end{cases} & \xrightarrow{\mathcal{F}_{\omega}} & \frac{2}{j\omega} \\ \operatorname{sinc} & \operatorname{sinc} (Tt) & \xleftarrow{\mathcal{F}_{\omega}} & \frac{1}{T} \operatorname{rect} \left(\frac{\omega}{2\pi T} \right) = \frac{1}{T} 1_{[-\pi T, +\pi T]}(f) \\ \operatorname{squared sinc} & \operatorname{sinc}^2(Tt) & \xleftarrow{\mathcal{F}_{\omega}} & \frac{1}{T} \operatorname{triang} \left(\frac{\omega}{2\pi T} \right) \\ n \text{-th time derivative} & \frac{d^n}{dt^n} f(t) & \xleftarrow{\mathcal{F}_{\omega}} & j^n \frac{d^n}{df^n} X(\omega) \\ \operatorname{time inverse} & \frac{1}{t} & \xleftarrow{\mathcal{F}_{\omega}} & -j\pi \operatorname{sgn}(\omega) \\ \end{array} \right)$	squared cosine $\cos^2(\omega_0 t)$	$\xrightarrow{\mathcal{F}_{\omega}}$	$\pi^{2} \left[2\delta(\omega) + \delta(\omega - \omega_{0}) + \delta(\omega + \omega_{0}) \right]$
$\begin{array}{cccc} \text{triangular} & \text{triang}\left(\frac{t}{T}\right) = \begin{cases} 1 - \frac{ t }{T} & t \leq T \\ 0 & t > T \end{cases} & \overleftarrow{\mathcal{F}_{\omega}} & T \operatorname{sinc}^{2}\left(\frac{\omega T}{2}\right) \\ \text{step} & u(t) = 1_{[0,+\infty]}(t) = \begin{cases} 1 & t \geq 0 \\ 0 & t < 0 \end{cases} & \overleftarrow{\mathcal{F}_{\omega}} & \pi \delta(f) + \frac{1}{j\omega} \\ \text{signum} & \operatorname{sgn}(t) = \begin{cases} 1 & t \geq 0 \\ -1 & t < 0 \end{cases} & \overleftarrow{\mathcal{F}_{\omega}} & \frac{2}{j\omega} \\ -1 & t < 0 \end{cases} & \underbrace{\mathcal{F}_{\omega}} & \frac{1}{T} \operatorname{rect}\left(\frac{\omega}{2\pi T}\right) = \frac{1}{T}1_{[-\pi T, +\pi T]}(f) \\ \text{squared sinc} & \operatorname{sinc}^{2}(Tt) & \overleftarrow{\mathcal{F}_{\omega}} & \frac{1}{T} \operatorname{triang}\left(\frac{\omega}{2\pi T}\right) \\ n\text{-th time derivative} & \frac{d^{n}}{dt^{n}}f(t) & \overleftarrow{\mathcal{F}_{\omega}} & j^{n}\frac{d^{n}}{df^{n}}X(\omega) \\ n\text{-th frequency derivative} & \frac{1}{t} & \overleftarrow{\mathcal{F}_{\omega}} & -j\pi \operatorname{sgn}(\omega) \\ \end{array}$	rectangular $\operatorname{rect}\left(\frac{t}{T}\right) = \begin{cases} 1 & t \leq \frac{T}{2} \\ 0 & t > \frac{T}{2} \end{cases}$	$\xleftarrow{\mathcal{F}_{\omega}}{\mathcal{F}_{\omega}}$	$T\operatorname{sinc}\left(\frac{\omega T}{2}\right)$
$\begin{aligned} \text{step} \qquad u(t) = 1_{[0,+\infty]}(t) = \begin{cases} 1 & t \ge 0 \\ 0 & t < 0 \end{cases} & \stackrel{\mathcal{F}_{\omega}}{\longleftrightarrow} & \pi \delta(f) + \frac{1}{j\omega} \end{aligned}$ $\begin{aligned} \text{signum} \qquad \text{sgn}(t) = \begin{cases} 1 & t \ge 0 \\ -1 & t < 0 \end{cases} & \stackrel{\mathcal{F}_{\omega}}{\longleftrightarrow} & \frac{2}{j\omega} \end{aligned}$ $\begin{aligned} \text{sinc} & \text{sinc}(Tt) & \stackrel{\mathcal{F}_{\omega}}{\longleftrightarrow} & \frac{1}{T} \operatorname{rect}\left(\frac{\omega}{2\pi T}\right) = \frac{1}{T} 1_{[-\pi T, +\pi T]}(f) \end{aligned}$ $\begin{aligned} \text{squared sinc} & \text{sinc}^2(Tt) & \stackrel{\mathcal{F}_{\omega}}{\longleftrightarrow} & \frac{1}{T} \operatorname{riang}\left(\frac{\omega}{2\pi T}\right) \end{aligned}$ $\begin{aligned} n\text{-th time derivative} & \frac{d^n}{dt^n} f(t) & \stackrel{\mathcal{F}_{\omega}}{\longleftrightarrow} & (j\omega)^n X(\omega) \end{aligned}$ $\begin{aligned} n\text{-th frequency derivative} & \frac{1}{t} & \stackrel{\mathcal{F}_{\omega}}{\longleftrightarrow} & -j\pi \operatorname{sgn}(\omega) \end{aligned}$	triangular $\operatorname{triang}\left(\frac{t}{T}\right) = \begin{cases} 1 - \frac{ t }{T} & t \leqslant T\\ 0 & t > T \end{cases}$	$\xleftarrow{\mathcal{F}_{\omega}}$	$T\operatorname{sinc}^2\left(\frac{\omega T}{2}\right)$
$ \begin{array}{ll} \text{signum} & \text{sgn}\left(t\right) = \begin{cases} 1 & t \ge 0 \\ -1 & t < 0 \end{cases} & \stackrel{\mathcal{F}_{\omega}}{\longleftrightarrow} & \frac{2}{j\omega} \\ \text{sinc} & \text{sinc}\left(Tt\right) & \stackrel{\mathcal{F}_{\omega}}{\longleftrightarrow} & \frac{1}{T}\operatorname{rect}\left(\frac{\omega}{2\pi T}\right) = \frac{1}{T}1_{[-\pi T, +\pi T]}(f) \\ \text{squared sinc} & \text{sinc}^{2}\left(Tt\right) & \stackrel{\mathcal{F}_{\omega}}{\longleftrightarrow} & \frac{1}{T}\operatorname{triang}\left(\frac{\omega}{2\pi T}\right) \\ n\text{-th time derivative} & \frac{d^{n}}{dt^{n}}f(t) & \stackrel{\mathcal{F}_{\omega}}{\longleftrightarrow} & (j\omega)^{n}X(\omega) \\ n\text{-th frequency derivative} & t^{n}f(t) & \stackrel{\mathcal{F}_{\omega}}{\longleftrightarrow} & j^{n}\frac{d^{n}}{df^{n}}X(\omega) \\ \text{time inverse} & \frac{1}{t} & \stackrel{\mathcal{F}_{\omega}}{\longleftrightarrow} & -j\pi\operatorname{sgn}(\omega) \\ \end{array} $	step $u(t) = 1_{[0,+\infty]}(t) = \begin{cases} 1 & t \ge 0\\ 0 & t < 0 \end{cases}$	$\xleftarrow{\mathcal{F}_{\omega}}{\mathcal{F}_{\omega}}$	$\pi\delta(f) + rac{1}{j\omega}$
$\begin{array}{lll} \sin c & \sin c \left(Tt\right) & \xleftarrow{\mathcal{F}_{\omega}} & \frac{1}{T} \operatorname{rect}\left(\frac{\omega}{2\pi T}\right) = \frac{1}{T} 1_{\left[-\pi T, +\pi T\right]}(f) \\ & \text{squared sinc} & \sin c^{2} \left(Tt\right) & \xleftarrow{\mathcal{F}_{\omega}} & \frac{1}{T} \operatorname{triang}\left(\frac{\omega}{2\pi T}\right) \\ & n\text{-th time derivative} & \frac{d^{n}}{dt^{n}} f(t) & \xleftarrow{\mathcal{F}_{\omega}} & (j\omega)^{n} X(\omega) \\ & n\text{-th frequency derivative} & t^{n} f(t) & \xleftarrow{\mathcal{F}_{\omega}} & j^{n} \frac{d^{n}}{df^{n}} X(\omega) \\ & \text{time inverse} & \frac{1}{t} & \xleftarrow{\mathcal{F}_{\omega}} & -j\pi \operatorname{sgn}(\omega) \end{array}$	signum $\operatorname{sgn}(t) = \begin{cases} 1 & t \ge 0 \\ -1 & t < 0 \end{cases}$	$\xleftarrow{\mathcal{F}_{\omega}}{\mathcal{F}_{\omega}}$	$\frac{2}{j\omega}$
squared sincsinc2 (Tt) $\xrightarrow{\mathcal{F}_{\omega}}$ $\frac{1}{T}$ triang $\left(\frac{\omega}{2\pi T}\right)$ <i>n</i> -th time derivative $\frac{d^n}{dt^n}f(t)$ $\xrightarrow{\mathcal{F}_{\omega}}$ $(j\omega)^n X(\omega)$ <i>n</i> -th frequency derivative $t^n f(t)$ $\xrightarrow{\mathcal{F}_{\omega}}$ $j^n \frac{d^n}{df^n} X(\omega)$ time inverse $\frac{1}{t}$ $\xrightarrow{\mathcal{F}_{\omega}}$ $-j\pi \operatorname{sgn}(\omega)$	sinc $\sin(Tt)$	$\stackrel{\mathcal{F}_{\omega}}{\longleftrightarrow}$	$\frac{1}{T}\operatorname{rect}\left(\frac{\omega}{2\pi T}\right) = \frac{1}{T}1_{\left[-\pi T, +\pi T\right]}(f)$
$\begin{array}{ccc} n\text{-th time derivative} & \frac{d^n}{dt^n}f(t) & \xleftarrow{\mathcal{F}_{\omega}} & (j\omega)^n X(\omega) \\ n\text{-th frequency derivative} & t^n f(t) & \xleftarrow{\mathcal{F}_{\omega}} & j^n \frac{d^n}{df^n} X(\omega) \\ \text{time inverse} & \frac{1}{t} & \xleftarrow{\mathcal{F}_{\omega}} & -j\pi \operatorname{sgn}(\omega) \end{array}$	squared sinc $\operatorname{sinc}^2(Tt)$	$\stackrel{\mathcal{F}_{\omega}}{\longleftrightarrow}$	$\frac{1}{T}$ triang $\left(\frac{\omega}{2\pi T}\right)$
<i>n</i> -th frequency derivative $t^n f(t) \xleftarrow{\mathcal{F}_{\omega}}{f^n df^n} J^n \frac{d^n}{df^n} X(\omega)$ time inverse $\frac{1}{t} \xleftarrow{\mathcal{F}_{\omega}}{f^n df^n} -j\pi \operatorname{sgn}(\omega)$	<i>n</i> -th time derivative $\frac{d^n}{dt^n} f(t)$	$\xrightarrow{\mathcal{F}_{\omega}}$	$(j\omega)^n X(\omega)$
time inverse $\frac{1}{4} \xleftarrow{\mathcal{F}_{\omega}} -j\pi \operatorname{sgn}(\omega)$	<i>n</i> -th frequency derivative $t^n f(t)$	$\xleftarrow{\mathcal{F}_{\omega}}$	$j^n \frac{d^n}{dtn} X(\omega)$
	time inverse $\frac{1}{2}$	$\xleftarrow{\mathcal{F}_{\omega}}$	$-j\pi \mathrm{sgn}(\omega)$

Table of Continuous-time Pulsation Fourier Transform Pairs

$x[n] = \mathcal{Z}^{-1} \left\{ X(z) \right\} =$	$\frac{1}{2\pi j} \oint X(z) z^{n-1} dz$	$\xleftarrow{\mathcal{Z}}$	$X(z) = \mathcal{Z} \left\{ x[n] \right\} = \sum_{n=-\infty}^{+\infty} x[n] z^{-n}$	ROC
transform time reversal complex conjugation reversed conjugation	$x[n] \ x[-n] \ x^*[n] \ x^*[n] \ x^*[n]$	$\begin{array}{c} \overset{Z}{\longleftrightarrow} \\ \overset{Z}{\longleftrightarrow} \\ \overset{Z}{\longleftrightarrow} \\ \overset{Z}{\longleftrightarrow} \end{array}$	$egin{aligned} X(z) \ X(rac{1}{z}) \ X^*(z^*) \ X^*(rac{1}{z^*}) \end{aligned}$	R_x $\frac{1}{R_x}$ R_x $\frac{1}{R_x}$
real part imaginary part	$\Re \mathfrak{e} \{x[n]\}$ $\Im \mathfrak{m} \{x[n]\}$	$\stackrel{\mathcal{Z}}{\longleftrightarrow}$	$\frac{1}{2}[X(z) + X^*(z^*)] \\ \frac{1}{2j}[X(z) - X^*(z^*)]$	$egin{array}{c} R_x \ R_x \end{array}$
time shifting scaling in \mathcal{Z} downsampling by N	$x[n - n_0]$ $a^n x[n]$ $x[Nn], N \in \mathbb{N}_0$	$\begin{array}{c} \overset{\mathcal{Z}}{\longleftrightarrow} \\ \overset{\mathcal{Z}}{\longleftrightarrow} \\ \overset{\mathcal{Z}}{\longleftrightarrow} \end{array}$	$\begin{aligned} z^{-n_0} X(z) \\ X\left(\frac{z}{a}\right) \\ \frac{1}{N} \sum_{k=0}^{N-1} X\left(W_N^k z^{\frac{1}{N}}\right) W_N = e^{-\frac{j2\omega}{N}} \end{aligned}$	$R_x \\ a R_x \\ R_x$
linearity time multiplication frequency convolution	$ax_1[n] + bx_2[n]$ $x_1[n]x_2[n]$ $x_1[n] * x_2[n]$	$\begin{array}{c} \overset{\mathcal{Z}}{\longleftrightarrow} \\ \overset{\mathcal{Z}}{\longleftrightarrow} \\ \overset{\mathcal{Z}}{\longleftrightarrow} \end{array}$	$aX_1(z) + bX_2(z)$ $\frac{1}{2\pi j} \oint X_1(u)X_2\left(\frac{z}{u}\right) u^{-1} du$ $X_1(z)X_2(t)$	$egin{aligned} R_x \cap R_y \ R_x \cap R_y \ R_x \cap R_y \end{aligned}$
delta function shifted delta function	$\delta[n] \\ \delta[n-n_0]$	$\stackrel{\mathcal{Z}}{\longleftrightarrow}$	$\frac{1}{z^{-n_0}}$	$\forall z \\ \forall z$
step	u[n] -u[-n-1]	$\stackrel{\mathcal{Z}}{\longleftrightarrow}$	$\frac{z}{z-1}$	z > 1 $ z < 1$
ramp	$nu[n]$ $n^2u[n]$	$\stackrel{\mathcal{Z}}{\longleftrightarrow}$	$\frac{z}{(z-1)^2} \frac{z}{(z-1)^3}$	z > 1 z > 1
	$-n^2u[-n-1]$ $n^3u[n]$	$\stackrel{\mathcal{Z}}{\longleftrightarrow}$	$\frac{z(z+1)}{(z-1)^3}$ $\frac{z(z+4z+1)}{(z-1)^4}$	z < 1 $ z > 1$
	$-n^3u[-n-1]$ $(-1)^n$	$\begin{array}{c} \stackrel{\mathcal{Z}}{\longleftrightarrow} \\ \stackrel{\mathcal{Z}}{\longleftrightarrow} \end{array}$	$\frac{z(z^{2}+4z+1)}{(z-1)^{4}}$ $\frac{z}{z+1}$	z < 1 z < 1
exponential	$a^n u[n] \ -a^n u[-n-1] \ a^{n-1} u[n-1] \ na^n u[n] \ n^2 a^n u[n] \ e^{-an} u[n]$	$\begin{array}{c} \xrightarrow{z} \\ \xrightarrow{z} \end{array}$	$\frac{z}{z-a}$ $\frac{z}{z-a}$ $\frac{1}{z-a}$ $\frac{az}{(z-a)^2}$ $\frac{az(z+a)^3}{(z-a)^3}$ $\frac{z}{z-e^{-a}}$	$\begin{split} z > a \\ z < a \\ z > a \end{split}$
exp. interval $\begin{cases} a^n \\ 0 \end{cases}$	$n = 0, \dots, N - 1$ otherwise	$\stackrel{Z}{\iff}$	$\frac{1-a^N z^{-N}}{1-az^{-1}}$	z > 0
sine cosine	$\sin (\omega_0 n) u[n]$ $\cos (\omega_0 n) u[n]$ $a^n \sin (\omega_0 n) u[n]$ $a^n \cos (\omega_0 n) u[n]$	$\begin{array}{c} \xrightarrow{z} \\ \xleftarrow{z} \\ \xleftarrow{z} \\ \xleftarrow{z} \\ \xleftarrow{z} \\ \xleftarrow{z} \\ \xleftarrow{z} \\ \end{aligned}$	$\begin{array}{c} z\sin(\omega_0) \\ \overline{z^2 - 2\cos(\omega_0)z + 1} \\ z(z - \cos(\omega_0)) \\ \overline{z^2 - 2\cos(\omega_0)z + 1} \\ za\sin(\omega_0) \\ \overline{z^2 - 2a\cos(\omega_0)z + a^2} \\ z(z - a\cos(\omega_0)) \\ \overline{z^2 - 2a\cos(\omega_0)z + a^2} \end{array}$	z > 1 z > 1 z > a z > a
differentiation in \mathcal{Z} integration in \mathcal{Z}	$nx[n] \\ \frac{x[n]}{n} \\ \frac{x[n]}{n} \\ a^m m!} a^m u[n]$	$\begin{array}{c} \overset{Z}{\longleftrightarrow} \\ \overset{Z}{\longleftrightarrow} \\ \overset{Z}{\longleftrightarrow} \end{array}$	$\begin{array}{c} -z \frac{dX(z)}{dz} \\ -\int_0^z \frac{X(z)}{z} dz \\ \overline{(z-a)^{m+1}} \end{array}$	R_x R_x

Table of z-Transform Pairs

Note:

$$\frac{z}{z-1} = \frac{1}{1-z^{-1}}$$

 $x[n] = \frac{1}{2\pi} \int_{-\pi}^{+\pi}$

transform time reversal $\operatorname{complex}$ conjugation reversed conjugation

even/symmetry odd/antisymmetry

time shifting

downsampling by N

upsampling by N

time multiplication

delta function

sine

step

 sinc

derivation

difference

cosine

rectangular

decaying step

frequency convolution

shifted delta function

linearity

	e rouri		11 1) I uno
$= \frac{1}{2\pi} \int_{-\pi}^{+\pi} X(e^{j\omega}) e^{j\omega n} d\omega$	$\stackrel{DTFT}{\longleftrightarrow}$	$X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n]$	$e^{-j\omega n}$
$x[n] \ x[-n] \ x^*[n] \ x^*[n] \ x^*[n]$	$\begin{array}{c} DTFT\\ DTFT\\ DTFT\\ DTFT\\ DTFT\\ DTFT\\ \end{array}$	$X(e^{j\omega})$ $X(e^{-j\omega})$ $X^*(e^{-j\omega})$ $X^*(e^{j\omega})$	
x[n] is purely real x[n] is purely imaginary $x[n] = x^*[-n]$ $x[n] = -x^*[-n]$	$\begin{array}{c} DTFT \\ \hline \end{array}$	$\begin{split} X(e^{j\omega}) &= X^*(e^{-j\omega}) \\ X(e^{j\omega}) &= -X^*(e^{-j\omega}) \\ X(e^{j\omega}) \text{ is purely real} \\ X(e^{j\omega}) \text{ is purely imagin} \end{split}$	even/symmetry odd/antisymmetry nary
$x[n-n_0] \ x[n]e^{j\omega_0 n}$	$\stackrel{DTFT}{\longleftrightarrow}$	$\begin{array}{l} X(e^{j\omega})e^{-j\omega n_0} \\ X(e^{j(\omega-\omega_0)}) \end{array}$	frequency shifting
$ \begin{array}{ll} x[Nn] & N \in \mathbb{N}_0 \\ \left\{ x \left[\frac{n}{N} \right] & n = kN \\ 0 & otherwise \end{array} \right. $	$\stackrel{DTFT}{\longleftrightarrow}$	$ \frac{1}{N} \sum_{k=0}^{N-1} X(e^{j\frac{\omega-2\pi k}{N}}) $ $X(e^{jN\omega}) $	
$\begin{aligned} ax_1[n] + bx_2[n] \\ x_1[n]x_2[n] \end{aligned}$	$\stackrel{DTFT}{\longleftrightarrow}$	$aX_1(e^{j\omega}) + bX_2(e^{j\omega})$ $X_1(e^{j\omega}) * X_2(e^{j\omega}) =$ $\frac{1}{2\pi} \int_{-\pi}^{+\pi} X_1(e^{j(\omega-\sigma)})X_2$	frequency convolution $(e^{j\sigma})d\sigma$
$x_1[n] * x_2[n]$	$\stackrel{DTFT}{\longleftrightarrow}$	$X_1(e^{j\omega})X_2(e^{j\omega})$	frequency multiplication

Table of Common Discrete Time Fourier Transform (DTFT) Pairs

 \xrightarrow{DTFT}

DTFT

DTFT

DTFT

 \overrightarrow{DTFT}

DTFT

 \underline{PTFT}

 \xrightarrow{DTFT}

 \xrightarrow{DTFT}

 \overrightarrow{DTFT}

 \xrightarrow{DTFT}

 \underline{DTFT}

DTFT

 \xrightarrow{DTFT}

DTFT

 \xrightarrow{DTFT}

1

 $e^{-j\omega n_0}$

 $\tilde{\delta}(\omega - \omega_0)$

 $\frac{\sin\left[\omega\left(M+\frac{1}{2}\right)\right]}{\sin(\omega/2)}$

 $\frac{1}{1-e^{-j\omega}} + \frac{1}{2}\tilde{\delta}(\omega)$

 $\tilde{\delta}(\omega)$

 $\delta[n]$

1

 $e^{j\omega_0 n}$

u[n]

nx[n]

 $\delta[n-n_0]$

 $\sin\left(\omega_0 n + \phi\right)$

 $\cos\left(\omega_0 n + \phi\right)$

 $a^n u[n] \quad (|a| < 1)$

 $\operatorname{rect}\left(\frac{n}{M}\right) = \begin{cases} 1 & |n| \leq M\\ 0 & \text{otherwise} \end{cases}$

 $\frac{\sin(\omega_c n)}{\pi n} = \frac{\omega_c}{\pi} \operatorname{sinc} \left(\omega_c n\right)$

 $\frac{x[n]-x[n-1]}{\frac{a^n \sin[\omega_0(n+1)]}{\sin \omega_0}}u[n] \quad |a|<1$

Note:

$$\tilde{\delta}(\omega) = \sum_{k=-\infty}^{+\infty} \delta(\omega + 2\pi k)$$
val:

$$\tilde{\operatorname{rect}}(\omega) = \sum_{k=-\infty}^{+\infty} \operatorname{rect}(\omega + 2\pi k)$$

 $\tilde{\operatorname{rect}}\left(\frac{\omega}{\omega_{c}}\right) = \begin{cases} 1 & |\omega| < \omega_{c} \\ 0 & \omega_{c} < |\omega| < \pi \end{cases}$

 $\frac{\sin[\omega(M+1)/2]}{\sin(\omega/2)}e^{-j\omega M/2}$

 $\frac{\sin[\omega M/2]}{\sin(\omega/2)}e^{-j\omega(M-1)/2}$

 $\frac{1}{1-2a\cos\left(\omega_{0}e^{-j\omega}\right)+a^{2}e^{-j2\omega}}$

 $j \frac{d}{d\omega} X(e^{j\omega})$ $(1 - e^{-j\omega}) X(e^{j\omega})$

Parse

$$\sum_{n=-\infty}^{+\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{-\pi}^{+\pi} |X(e^{j\omega})|^2 d\omega$$

special decaying step $(n+1)a^n u[n]$ (|a| < 1)

 $\begin{array}{ll} \mathrm{MA} & \mathrm{rect}\left(\frac{n}{M} - \frac{1}{2}\right) = \begin{cases} 1 & 0 \leqslant n \leqslant M \\ 0 & \mathrm{otherwise} \end{cases} \\ \mathrm{MA} & \mathrm{rect}\left(\frac{n}{M-1} - \frac{1}{2}\right) = \begin{cases} 1 & 0 \leqslant n \leqslant M - 1 \\ 0 & \mathrm{otherwise} \end{cases}$

delta function

shifted delta function

 $\frac{j}{2}\left[e^{-j\phi}\tilde{\delta}\left(\omega+\omega_{0}+2\pi k\right)-e^{+j\phi}\tilde{\delta}\left(\omega-\omega_{0}+2\pi k\right)\right]$

 $\frac{1}{2}\left[e^{-j\phi}\tilde{\delta}\left(\omega+\omega_{0}+2\pi k\right)+e^{+j\phi}\tilde{\delta}\left(\omega-\omega_{0}+2\pi k\right)\right]$

$f(t) = \mathcal{L}^{-1} \{ F(s) \} = \frac{1}{2\pi j} \lim_{T \to \infty} \int_{c-jT}^{c+jT} F(s) e^{st} ds$		$\xleftarrow{\mathcal{L}}$	$F(s) = \mathcal{L} \left\{ f(t) \right\} = \int_{-\infty}^{+\infty} f(t) e^{-st} dt$
transform	f(t)	$\xleftarrow{\mathcal{L}}$	F(s)
complex conjugation	$f^*(t)$	$\overset{\mathcal{L}}{\longleftrightarrow}$	$F^*(s^*)$
time shifting $f(t-a)$) $t \ge a > 0$	$\overset{\mathcal{L}}{\longleftrightarrow}$	$a^{-as}F(s)$
	$e^{-at}f(t)$	$\overset{\mathcal{L}}{\longleftrightarrow}$	F(s+a) frequency shifting
time scaling	f(at)	$\overset{\mathcal{L}}{\longleftrightarrow}$	$\frac{1}{ a }F(\frac{s}{a})$
linearity af	$f_1(t) + bf_2(t)$	$\xleftarrow{\mathcal{L}}$	$aF_1(s) + bF_2(s)$
time multiplication	$f_1(t)f_2(t)$	$\overset{\mathcal{L}}{\longleftrightarrow}$	$F_1(s) * F_2(s)$ frequency convolution
time convolution	$f_1(t) * f_2(t)$	$\stackrel{\mathcal{L}}{\longleftrightarrow}$	$F_1(s)F_2(s)$ frequency product
delta function	$\delta(t)$	$\xleftarrow{\mathcal{L}}$	1
shifted delta function	$\delta(t-a)$	$\overset{\mathcal{L}}{\longleftrightarrow}$	e^{-as} exponential decay
unit step	u(t)	$\xleftarrow{\mathcal{L}}$	1
ramp	tu(t)	$\xleftarrow{\mathcal{L}}$	$\frac{1}{c^2}$
parabola	$t^2 u(t)$	$\xleftarrow{\mathcal{L}}$	$\frac{2}{c^3}$
<i>n</i> -th power	t^n	$\xleftarrow{\mathcal{L}}$	$\frac{s}{s^{n+1}}$
exponential decay	e^{-at}	$\xleftarrow{\mathcal{L}}$	$\frac{1}{\alpha + \alpha}$
two-sided exponential decay	$e^{-a t }$	$\xleftarrow{\mathcal{L}}$	$\frac{2a}{2}$
1 0	te^{-at}	$\xleftarrow{\mathcal{L}}$	$\frac{a^2 - s^2}{\frac{1}{(s+a)^2}}$
	$(1-at)e^{-at}$	$\xleftarrow{\mathcal{L}}$	$\frac{s}{(s+a)^2}$
exponential approach	$1 - e^{-at}$	$\xleftarrow{\mathcal{L}}$	$\frac{()}{a} \frac{1}{s(s+a)}$
sine	$\sin\left(\omega t\right)$	$\xleftarrow{\mathcal{L}}$	$\frac{\omega}{\sqrt{2+\omega^2}}$
cosine	$\cos\left(\omega t\right)$	$\xleftarrow{\mathcal{L}}$	$\frac{s}{2+s}$
hyperbolic sine	$\sinh\left(\omega t\right)$	$^{\mathcal{L}}$	$\frac{\omega}{s^2 - \omega^2}$
hyperbolic cosine	$\cosh\left(\omega t\right)$	$\overset{\mathcal{L}}{\longleftrightarrow}$	$\frac{s}{s^2 - (1)^2}$
exponentially decaying sine	$e^{-at}\sin(\omega t)$	$\overset{\mathcal{L}}{\longleftrightarrow}$	$\frac{\omega}{(z+z)^2+z^2}$
exponentially decaying cosine	$e^{-at}\cos\left(\omega t\right)$	$\xleftarrow{\mathcal{L}}$	$\frac{(s+a)^2+\omega^2}{(s+a)^2+\cdots^2}$
factoria differentiation	+f(+)	L)	F'(z)
frequency a the differentiation	t f(t)	$\stackrel{\longleftarrow}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}$	-F(s)
	<i>i f</i> (<i>i</i>)		
time differentiation f'	$f(t) = \frac{d}{dt}f(t)$	$\stackrel{\mathcal{L}}{\longleftrightarrow}$	sF(s) - f(0)
time 2nd differentiation $f''($	$f(t) = \frac{d^2}{dt^2} f(t)$	$\stackrel{\mathcal{L}}{\longleftrightarrow}$	$s^2 F(s) - sf(0) - f'(0)$
time <i>n</i> -th differentiation $f^{(n)}($	$f(t) = \frac{d^n}{dt^n} f(t)$	$^{\mathcal{L}}$	$s^n F(s) - s^{n-1} f(0) - \dots - f^{(n-1)}(0)$
time integration $\int_0^t f(\tau) d\tau$	= (u * f)(t)	$\xleftarrow{\mathcal{L}}$	$\frac{1}{s}F(s)$
frequency integration	$\frac{1}{t}f(t)$	$\overset{\mathcal{L}}{\longleftrightarrow}$	$\int_s^\infty F(u) du$
time inverse	$f^{-1}(t)$	$\xleftarrow{\mathcal{L}}$	$\frac{F(s)-f^{-1}}{s}$
time differentiation	$f^{-n}(t)$	$\xleftarrow{\mathcal{L}}$	$\frac{F(s)}{s^n} + \frac{f^{-1}(0)}{s^n} + \frac{f^{-2}(0)}{s^{n-1}} + \dots + \frac{f^{-n}(0)}{s}$

Table of Laplace Transform Pairs